Instructions

• Use black ink or ball-point pen.
• Answer all questions.
• Answer the questions in the spaces provided – there may be more space than you need.
• Diagrams are NOT accurately drawn, unless otherwise indicated.
• You must show all your working out.

Information

• The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

• Read each question carefully before you start to answer it.
• Keep an eye on the time.
• Try to answer every question.
• Check your answers if you have time at the end
1.(a) Complete the table of values for \(y = 2^x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) On the grid, draw the graph of \(y = 2^x \)
2.(a) Complete the table of values for $y = \sin(x)$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

(b) On the grid, draw the graph of $y = \sin(x)$
3. (a) Complete the table of values for \(y = \cos(x) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
</tr>
</tbody>
</table>

(b) On the grid, draw the graph of \(y = \cos(x) \)
4. Here is a sketch of the curve $y = \sin x^\circ$ for $0 \leq x \leq 360$

\begin{align*}
\text{a) Given that } &\sin 30^\circ = \frac{1}{2}, \text{ write down the value of:} \\
\text{i) } &\sin 150^\circ \\
\text{................. (1)} \\
\text{ii) } &\sin 330^\circ \\
\text{................. (1)}
\end{align*}
5. Here is a sketch of the curve $y = \cos x^\circ$ for $0 \leq x \leq 360$

![Graph of $y = \cos x^\circ$ for $0 \leq x \leq 360$.]

a) Use the graph to find estimates of the solutions, in the interval $0 \leq x \leq 360$, of the equation:

i) $\cos(x) = -0.4$ (2)

ii) $4\cos(x) = 3$ (2)
This sketch shows part of the graph with equation \(y = pq^x \), where \(p \) and \(q \) are constants.

The points with coordinates (0, 8), (1, 18) and (1.5, \(k \)) lie on the graph. Calculate the values of \(p \), \(q \) and \(k \).
7. The depth of water, d metres, at the entrance to a harbour is given by the formula: \(d = 5 - 4 \sin(30t) \) where \(t \) is the time in hours after midnight on one day.

a) On the axes below, draw the graph of \(d \) against \(t \) for \(0 \leq t \leq 12 \).

b) Find the two values of \(t \), where \(0 \leq t \leq 24 \), when the depth is least.

\[............. \text{ and } \]