GCSE (1 – 9)
Compound and Inverse Functions

Instructions

• Use black ink or ball-point pen.
• Answer all questions.
• Answer the questions in the spaces provided
 – there may be more space than you need.
• Diagrams are NOT accurately drawn, unless otherwise indicated.
• You must show all your working out.

Information

• The marks for each question are shown in brackets
 – use this as a guide as to how much time to spend on each question.

Advice

• Read each question carefully before you start to answer it.
• Keep an eye on the time.
• Try to answer every question.
• Check your answers if you have time at the end.
1. Given that $f(x) = x - 4$ find:
 a) $f(5)
 \begin{align*}
f(5) &= 5 - 4 \\
 &= 1 \quad \cdots (1)
 \end{align*}

 b) $f(3)$
 \begin{align*}
f(3) &= 3 - 4 \\
 &= -1 \quad \cdots (1)
 \end{align*}

2. Given that $g(x) = 2x^2 - 10$ find:
 a) $g(2)$
 \begin{align*}
g(2) &= 2(2)^2 - 10 \\
 &= 8 - 10 \\
 &= -2 \quad \cdots (1)
 \end{align*}

 b) $g(-2)$
 \begin{align*}
g(-2) &= 2(-2)^2 - 10 \\
 &= 8 - 10 \\
 &= -2 \quad \cdots (1)
 \end{align*}

 c) Solve: $g(x) = 8$
 \begin{align*}
2x^2 - 10 &= 8 \\
2x^2 &= 18 \\
x^2 &= 9
 \end{align*}
 \begin{align*}
x &= \pm 3 \quad (3)
 \end{align*}
3. Given that \(f(x) = 3x - 5 \) find:

a) \[f(3) = 3(3) - 5 = 9 - 5 = 4 \] \hspace{1cm} \text{(1)}

b) \[f(-2) = 3(-2) - 5 = -6 - 5 = -11 \] \hspace{1cm} \text{(1)}

c) \text{Solve: } f(x) = 1

\[3x - 5 = 1 \]

\[3x = 6 \]

\[x = 2 \] \hspace{1cm} \text{(2)}

4. Given that \(f(x) = x^2 - 3 \) find:

a) \[f(10) = (10)^2 - 3 = 100 - 3 = 97 \] \hspace{1cm} \text{(1)}

b) \[f(-1) = (-1)^2 - 3 = 1 - 3 = -2 \] \hspace{1cm} \text{(1)}

c) \text{Find: } f^{-1}(x)

\[y = x^2 - 3 \]

\[y + 3 = x^2 \]

\[\sqrt{y + 3} = x \]

\[f^{-1}(x) = \sqrt{x + 3} \] \hspace{1cm} \text{(2)}
5. Given that \(f(x) = 2x - 4 \) and \(g(x) = 3x + 5 \)

 a) Find: \(gf(3) \)

 \[
 f(3) = 2(3) - 4 \\
 = 6 - 4 \\
 = 2
 \]

 \[
 g(2) = 3(2) + 5 \\
 = 6 + 5
 \]

 \[
 \dot{\ldots\ldots} \quad (2)
 \]

 b) Work out an expression for: \(f^{-1}(x) \)

 \[
 y = 2x - 4
 \]

 \[
 y + 4 = 2x
 \]

 \[
 \frac{1}{2}(y+4) = x
 \]

 \[
 f^{-1}(x) = \frac{1}{2}(x+4)
 \]

 \[
 f^{-1}(x) = \frac{1}{2}(x+4) \quad (2)
 \]

 c) Solve: \(f(x) = g(x) \)

 \[
 2x - 4 = 3x + 5
 \]

 \[
 -4 = x + 5
 \]

 \[
 x = -9
 \]

 \[
 \dot{\ldots\ldots} \quad (2)
 \]
6. Given that \(f(x) = 3x + 1 \) and \(g(x) = x^2 \)

 a) Write down an expression for: \(fg(x) \)

 \[
 3x^2 + 1 \quad (2)
 \]

 b) Work out an expression for: \(gf(x) \)

 \[
 (3x+1)^2 \quad (2)
 \]

 c) Solve: \(fg(x) = gf(x) \)

 \[
 3x^2 + 1 = (3x + 1)^2

 3x^2 + 1 = 9x^2 + 6x + 1

 0 = 6x^2 + 6x

 0 = x^2 + x

 0 = x(x + 1)

 x = 0, x = -1 \quad (3)
 \]
7. Given that \(f(x) = x^2 - 17 \) and \(g(x) = x + 3 \)

a) Work out an expression for: \(g^{-1}(x) \)

\[
y = x + 3
\]

\[
y - 3 = x
\]

\[
g^{-1}(x) = x - 3 \quad (2)
\]

b) Work out an expression for: \(f^{-1}(x) \)

\[
y = x^2 - 17
\]

\[
y + 17 = x^2
\]

\[
\sqrt{y + 17} = x
\]

\[
f^{-1}(x) = \sqrt{x + 17} \quad (2)
\]

c) Solve: \(f^{-1}(x) = g^{-1}(x) \)

\[
\sqrt{x + 17} = x - 3
\]

\[
x + 17 = (x - 3)^2
\]

\[
x + 17 = x^2 - 6x + 9
\]

\[
0 = x^2 - 7x - 8
\]

\[
0 = (x - 8)(x + 1)
\]

\[
x = 8 \quad x = -1
\]

\[
\text{...............} \quad (4)
\]
8. A function f is defined such that

$$f(x) = x^2 - 1$$

a) Find an expression for $f(x-2)$

$$f(x-2) = (x-2)^2 - 1$$

$$= x^2 - 2x - 2x + 4 - 1$$

$$= x^2 - 4x + 3$$

$$\therefore x^2 - 4x + 3 \quad (2)$$

b) Hence solve $f(x-2) = 0$

$$x^2 - 4x + 3 = 0$$

$$(x - 3)(x - 1) = 0$$

$x = 3$ \hspace{0.5cm} $x = 1$

$$x = 3, \quad x = 1 \quad (2)$$
9. A function \(f \) is defined such that
\[
f(x) = 4x - 1
\]
a) Find: \(f^{-1}(x) \)
\[
y = 4x - 1
\]
\[
y + 1 = 4x
\]
\[
\frac{y + 1}{4} = x
\]
\[
f^{-1}(x) = \frac{x + 1}{4}
\]

\[\text{(2)}\]

The function \(g \) is such that
\[
g(x) = kx^2 \quad \text{where} \quad k \text{ is a constant}
\]
Given that \(fg(2) = 12 \)

b) Work out the value of \(k \)
\[
g(2) = k(2)^2
\]
\[
= 4k
\]
\[
f(4k) = 4(4k) - 1
\]
\[
= 16k - 1
\]
\[
16k - 1 = 12
\]
\[
16k = 13
\]
\[
k = \frac{13}{16}
\]

\[\text{(2)}\]