Mathematics

November 2022 Practice Paper 3 (Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of a prism $=$ area of cross section \times length Where r is the radius and d is the diameter:

Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle ABC where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

$1 \quad m=n-5 p$
Make p the subject of the formula.

2 (a) Write 5.2×10^{-1} as an ordinary number.
(b) Work out the value of $\left(3.2 \times 10^{3}\right) \times\left(6.5 \times 10^{4}\right)$

Give your answer in standard form.

3 Write 30 kilometres per hour in metres per second
m/s

4 In a bag there are blue sweets, red sweets and yellow sweets.
The number of red sweets is three times the number of blue sweets.
The number of yellow sweets is half the number of red sweets.
Write down the ratio of blue sweets to red sweets to yellow sweets.
Give your answer in the form $a: b: c$ where a, b and c are whole numbers
$5 \quad$ Bob is going to make some orange paint.
He needs to mix red paint, yellow paint and white paint in the ratio $5: 4: 1$
Bob wants to make $750 \mathrm{~m} l$ of orange paint.
Bob has
400 ml of red paint
300 ml of yellow paint
200 ml of white paint
Does Bob have enough red paint, yellow paint and white paint to make the orange paint? You must show all your working.

6 A shop sells small chocolate bars and large chocolate bars.
There are
small chocolate bars are sold in packs of 4
large chocolate bars are sold in packs of 9
On one day
$\begin{gathered}\text { the number of packs of } \\ \text { small chocolate bars sold }\end{gathered}: \begin{gathered}\text { the number of packs of } \\ \text { large chocolate bars sold }\end{gathered}=5: 2$

A total of 266 chocolate bars were sold.
Work out the number of small chocolate bars sold.

$B E$ is parallel to $C D$.
$A B C$ and $A E D$ are straight lines.
$A B=4 \mathrm{~cm}, B C=6 \mathrm{~cm}, B E=5 \mathrm{~cm}, A E=4.8 \mathrm{~cm}$.
(a) Calculate the length of $C D$.
\qquad
(b) Calculate the length of $E D$.
\qquad

8 A cylinder has a diameter of 9 cm and a height of 11 cm .
Work out the volume of the cylinder.
Give your answer correct to 1 decimal place.

\qquad cm^{3}
(b) The volume of another cylinder is $1500 \mathrm{~cm}^{3}$.

Michael says that $1500 \mathrm{~cm}^{3}$ is the same as $15 \mathrm{~m}^{3}$.
Is Michael correct?
You must give a reason for your answer.
\qquad
\qquad
$9 \quad 500$ people were surveyed.
All of the people were either left handed or right handed.
53 of the people are left handed.
26 males are left handed.
231 of the people are male.
(a) Use this information to complete the frequency tree.

10 Bradley gets the bus on Saturday and Sunday.
The probability that Bradley's bus will be late on any day is 0.2
(a) Complete the probability tree diagram.

(b) Work out the probability that Bradley's bus is late on at least one of these days.

11 Michael recorded the maximum temperature every day in September.
The table shows information about his results.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Frequency
$14<\mathrm{t} \leqslant 18$	4
$18<\mathrm{t} \leqslant 20$	10
$20<\mathrm{t} \leqslant 22$	8
$22<\mathrm{t} \leqslant 24$	5
$24<\mathrm{t} \leqslant 28$	3

Calculate an estimate for the mean maximum temperature.
\qquad ${ }^{\circ} \mathrm{C}$

12 A number x is rounded to 2 decimal places.
The result is 0.18
Write down the error interval for x.
\qquad $\leq x<$

13 There are 30 students in a class.
Two students are going to be selected to receive a prize.
How many different pairs of students could be selected?
$14 \quad y^{2} \times y^{a}=y^{7}$
(a) Find the value of a.
$\left(y^{4}\right)^{b}=y^{12}$
(b) Find the value of b.

15 Expand and Simplify $(2 x+1)(x+2)(x+3)$

16100 ml of liquid A and 200 ml of liquid B are mixed together to make liquid C .
Liquid A has a density of $0.7 \mathrm{~g} / \mathrm{ml}$.
Liquid B has a density of $1.1 \mathrm{~g} / \mathrm{ml}$.
Work the density of liquid C.
g / ml

17

Shape A is a regular triangle. Shape B is a regular octagon.
Another regular polygon, P , is shown on the diagram.
How many sides does polygon P have?
You must show your working.

18

Shape \mathbf{A} is reflected in the line $x=1$ to give shape \mathbf{B}.
Shape \mathbf{B} is reflected in the line $y=-1$ to give shape \mathbf{C}.
Describe the single transformation that will map shape \mathbf{A} to shape \mathbf{C}.
\qquad
\qquad
\qquad

19 The cumulative frequency graph gives some information the times it took people to complete a challenge.

(a) Find the median time.
\qquad
(b) Find the number of people who took longer then 80 seconds to complete the challenge.

A, B, C and D are points on the circumference of a circle, centre O.
Angle $B O D=x^{\circ}$
Find the size of angle $B C D$, in terms of x.
Give reasons for each stage of your working.

21 Simplify fully $\frac{3 x+6}{x-4} \div \frac{2 x^{2}+9 x+10}{x^{2}-4 x}$

22 (a) Write $x^{2}+10 x+2$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=x^{2}+10 x+2$
$23 \quad A B C$ is a triangle.

$C D E F$ is a parallelogram such that:
D is the midpoint of $A C$
E is the midpoint of $A B$
F is the midpoint of $B C$
Prove that triangle $A D E$ is congruent to triangle $B E F$.

24 The graph of $\mathrm{y}=\mathrm{f}(x)$ is shown below.

The coordinates of the minimum point of this curve are $(2,-3)$.
Write down the coordinates of the turning point of the curve with equation
(a) $y=\mathrm{f}(x+2)$
(b) $y=-\mathrm{f}(x)$
(c) $y=\mathrm{f}(x)+2$
(d) $y=\mathrm{f}(-x)$

25

The area of the triangle is $100 \mathrm{~m}^{2}$
Calculate the perimeter of triangle $A B C$.
Give your answer to 3 significant figures.

26 The diagram shows a parallelogram.

$\overrightarrow{O A}=2 a$
$\overrightarrow{O B}=2 b$
D is the point on $O C$ such that $\mathrm{OD}: \mathrm{DC}=2: 1$
E is the midpoint of $B C$
Show that A, D and E are on the same straight line.

