Mathematics

November 2022 Practice Paper 3 (Calculator) Foundation Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Foundation Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:
Area of a trapezium $=\frac{1}{2}(a+b) h$
Volume of a prism $=$ area of cross section \times length
Where r is the radius and d is the diameter:
Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

Compound Interest

Where P is the principal amount, r is the interest rate over a given period and n is number of times that the interest is compounded:

$$
\text { Total accrued }=P\left(1+\frac{r}{100}\right)^{n}
$$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B)
$$

1 Write $\frac{7}{10}$ as a decimal.
0.7

2 Write down the value of the 2 in the number 6024

20

3 Change 0.87 kilograms to grams.

$$
\times 1000
$$

$$
870
$$

grams
$4 \quad$ Write down a multiple of 7 that is between 20 and 30

$$
21 \text { or } 28
$$

5 Write the following numbers in order of size.
Start with the smallest number.
3.2
3.27
3.72
3.702
3.02
3.02
3. 2
3.27
3.702

(a) Write down the coordinates of point A.
(.....2..... $6 \ldots .$.
(1)
(b) On the grid mark with a cross (\times) the point $(5,-1)$.

Label this point B.
$7 \quad A B C D$ is a parallelogram

(a) Work out the size of the angle $A D C . \quad 180-71$
(b) Give a reason for your answer. \qquad
\qquad
\qquad

8

$$
180-64-32
$$

(a) Work out the size of the angle $A B C$.
(b) Give a reason for your answer.

Angles in a triangle add to 180°

9 The nth term of a sequence is $4 n+3$
(a) Find the first two terms of this sequence.

$$
\begin{aligned}
& 4(1)+3=7 \\
& 4(2)+3=11
\end{aligned}
$$

(b) Is 35 a term in this sequence.

You must show how you get your answer.

$$
4(8)+3=35
$$

Yes it is the $8^{\text {th }}$ term
\qquad

10 Amelia and Sophie did a test.
The total for the test was 75 marks.
Amelia got 56\% of the 75 marks.
Sophie got 43 out of 75
Who got the highest mark?
You must show all your working.
$0.56 \times 75=42$
Sophie $\quad 43>42$

2 calculators cost $£ 10.40 \times 15$
3 pens cost $£ 3.54$

$$
\times 10
$$

Jude wants to buy 30 calculators and 30 pens.
He only has $£ 200$
Does Jude have enough money to buy 30 calculators and 30 pens?
You must show how you get your answer.

$$
\begin{aligned}
& 10.40 \times 15=156 \\
& 3.54 \times 10=35.40 \\
& 156+35.4=t 191.40 \\
& \text { Yes }
\end{aligned}
$$

The diagram shows a cuboid $A B C D E F G H$
$A B C D$ is a square with area $25 \mathrm{~cm}^{2}$.
$\mathrm{CG}=12 \mathrm{~cm}$.
Find the volume of the cuboid. 25×12

13 (a) Complete the table of values for $y=1-2 x$

x	-2	-1	0	1	2	3
y	5	3	1	-1	-3	-5

(b) On the grid draw the graph of $y=1-2 x$ for values of x from -2 to 3
(c) Use your graph to find the value of y when $x=0.4$

14 Use your calculator to work out $\frac{12.74+\sqrt{9.5}}{6.04 \times 4.1}$
(a) Write down all the figures on your calculator display.
.... 0.6389196819
(2)
(b) Write your answer to part (a) correct to 2 significant figures.
\qquad

15 You can use this graph to change between feet and metres.

(a) Change 12 feet to metres.
(b) Change 25 metres to feet.

> 3.7
> $\left.(3.6 \text { or } 3.7)^{1}\right)$

$$
\begin{aligned}
5 \mathrm{~m} & =16.5 \mathrm{ft} \\
\times 5 & \times 5 \\
25 \mathrm{~m} & =82.5 \mathrm{ft}
\end{aligned}
$$

16 Emily drove to the beach. She stayed at the beach and then she drove back home.
Here is Emily's travel graph.

(a) For how many minutes did Emily stay at the beach?

$$
\begin{align*}
& 1445 \text { to } 1600 \\
& \text { I hour } 15 \text { ming } \tag{1}
\end{align*}
$$

75 .minutes
(b) What was Emily's average speed on her journey to the beach?

$$
35 \text { miles in } 45 \text { mins }
$$

speed $=\frac{\text { distance }}{\text { time }}$

$$
45 \text { ming }=0.75 \text { hours }
$$

$$
\begin{equation*}
\frac{35}{0.75}=46.6 \tag{2}
\end{equation*}
$$

17

Describe fully the single transformation that maps triangle \mathbf{A} on triangle \mathbf{B}.
Centre $(6,-7)$
Enlarge neat... Scale Fact 2
\qquad

18 The table shows some information about the colours of cars parked in a car park.

Colour	Frequency
Black	24
Silver	16
White	15
Blue	5

Degrees
144
96
90
30
360

Give your answer in its simplest form.

$$
\frac{15}{60}=\frac{1}{4}
$$

(b) Draw an accurate pie chart to show this information.

19

$$
m=n-5 p
$$

Make p the subject of the formula.

$$
\begin{aligned}
m+5 p & =n \\
5 p & =n-m \\
p & =\frac{n-m}{5}
\end{aligned}
$$

$$
p=\frac{n-m}{5}
$$

20
(a) Write 5.2×10^{-1} as an ordinary number.
(b) Work out the value of $\left(3.2 \times 10^{3}\right) \times\left(6.5 \times 10^{4}\right)$ Give your answer in standard form.

$$
208000000
$$

21 Write 30 kilometres per hour in metres per second

$$
30 \times 1000=30000
$$

30000 m per hour
500 m per minute

$$
\div 60
$$

$$
\frac{25}{3} \mathrm{~m} / \mathrm{S}
$$

\qquad m / s

22 In a bag there are blue sweets, red sweets and yellow sweets.
The number of red sweets is three times the number of blue sweets.
The number of yellow sweets is half the number of red sweets.
Write down the ratio of blue sweets to red sweets to yellow sweets.
Give your answer in the form $a: b: c$ where a, b and c are whole numbers

$$
\begin{aligned}
& R: B: Y \\
& 3: 1: 1.5 \\
& 6: 2: 3
\end{aligned}
$$

$$
\begin{aligned}
& B: R: 4 \\
& 2: 6: 3
\end{aligned}
$$

23 Bob is going to make some orange paint.
He needs to mix red paint, yellow paint and white paint in the ratio $5: 4: 1$
Bob wants to make $750 \mathrm{~m} l$ of orange paint.

$$
10 \text { parts }
$$

Bob has

$$
\begin{aligned}
& 400 \mathrm{ml} \text { of red paint } \\
& 300 \mathrm{ml} \text { of yellow paint } \\
& 200 \mathrm{~m} l \text { of white paint }
\end{aligned} \leftarrow \text { he has }
$$

Does Bob have enough red paint, yellow paint and white paint to make the orange paint? You must show all your working.

$$
\begin{aligned}
& \frac{750}{10}=75 \text { (nl per part) } \\
& \text { Red: } 75 \times 5=375 \mathrm{ml} \\
& \text { Yellow: } 75 \times 4=300 \mathrm{ml} \\
& \text { White: } 75 \times 1=75 \mathrm{nl}
\end{aligned}
$$

Yes Bob has enough

24 A shop sells small chocolate bars and large chocolate bars.
There are
small chocolate bars are sold in packs of 4
large chocolate bars are sold in packs of 9
On one day

$$
\begin{gathered}
\text { the number of packs of } \\
\text { small chocolate bars sold }
\end{gathered}: \begin{gathered}
\text { the number of packs of } \\
\text { large chocolate bars sold }
\end{gathered}=5: 2
$$

A total of 266 chocolate bars were sold.
Work out the number of small chocolate bars sold.

$$
\frac{266}{38}=7
$$

$$
20 \times 7=140
$$

25

$B E$ is parallel to $C D$.
$A B C$ and $A E D$ are straight lines.
$A B=4 \mathrm{~cm}, B C=6 \mathrm{~cm}, B E=5 \mathrm{~cm}, A E=4.8 \mathrm{~cm}$.

(a) Calculate the length of $C D$.

$$
\frac{10}{4}=2.5
$$

$$
5 \times 2.5
$$

(b) Calculate the length of $E D$.

$$
\begin{gathered}
4.8 \times 2.5=12 \quad(A D) \\
12-4.8=7.2
\end{gathered}
$$

7.2

Work out the volume of the cylinder.
Give your answer correct to 1 decimal place.

$$
\begin{aligned}
\text { volume } & =\pi r^{2} h \\
& =\pi(4.5)^{2}(11) \\
& =699.8 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) The volume of another cylinder is $1500 \mathrm{~cm}^{3}$. Michael says that $1500 \mathrm{~cm}^{3}$ is the same as $15 \mathrm{~m}^{3}$.

Is Michael correct?
You must give a reason for your answer.

27500 people were surveyed.
All of the people were either left handed or right handed.
53 of the people are left handed.
26 males are left handed.
231 of the people are male.
(a) Use this information to complete the frequency tree.

28 Bradley gets the bus on Saturday and Sunday.
The probability that Bradley's bus will be late on any day is 0.2
(a) Complete the probability tree diagram.

Saturday

Sunday

(b) Work out the probability that Bradley's bus is late on at least one of these days.

$$
0.04+0.16+0.16=0.36
$$

29 Michael recorded the maximum temperature every day in September.
The table shows information about his results.

Calculate an estimate for the mean maximum temperature.

$$
\frac{615}{30}=20.5^{\circ} \mathrm{C}
$$

$30 \quad \boldsymbol{a}=\binom{4}{1}$ and $\boldsymbol{b}=\binom{3}{2}$
(a) Write down as a column vector
(i) $\mathbf{a}+\mathbf{b}$

$$
\binom{4}{1}+\binom{3}{2}
$$

(ii) $2 \mathbf{a}-\mathbf{b}$

$$
\binom{8}{2}-\binom{3}{2}
$$

$$
c=\binom{5}{-4}
$$

(b) From the point P, draw the vector \mathbf{c}

