Mathematics

June 2023 Practice Paper 3 (Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of a prism $=$ area of cross section \times length Where r is the radius and d is the diameter:

Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle ABC where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

$1 \quad A=2^{3} \times 3^{2} \times 5$
$B=2^{2} \times 3^{3} \times 5$
Write down the highest common factor (HCF) of A and B

2 Verity buys 12 bottles of apple juice for a total cost of $£ 15$
Verity sells all 12 bottles at $£ 1.75$ each bottle.
Work out Verity's percentage profit.
\qquad \%

3 The table shows the populations of five countries.

Country	Population
India	1.4×10^{9}
Turkey	8.4×10^{7}
Denmark	5.8×10^{6}
Estonia	1.3×10^{6}
Iceland	3.4×10^{5}

(a) Work out the difference between the population of India and the population of Turkey. Give your answer in standard form.

Given that

$$
\text { population of Iceland }=\frac{1}{k} \times \text { population of Denmark }
$$

(b) Work out the value of k.

Give your answer correct to the nearest whole number.

$$
k=
$$

\qquad
(2)

4 The diagram shows the front of a wooden door with a semicircular glass window.

Julie wants to apply 2 coats of wood varnish to the front of the door, shown shaded in the diagram. 250 millilitres of wood varnish covers $4 \mathrm{~m}^{2}$ of the wood.

Work out how many millilitres of wood varnish Julie will need.
Give your answer correct to the nearest millilitre.

$A B C D$ and $F G H I$ are parallel straight lines.
$E B G J$ and $E C H$ are straight lines.
$B E=C E$
Angle $B E C=48^{\circ}$
Work out the size of angle $J G H$.
Give a reason for each stage of your working.

6 Adam drove 56 km from Liverpool to Manchester.
He then drove 61 km from Manchester to Sheffield.
Adam's average speed from Liverpool to Manchester was $80 \mathrm{~km} / \mathrm{h}$.
Adam took 85 minutes to drive from Manchester to Sheffield.
(a) Work out Adam's average speed for his total drive from Liverpool to Sheffield.
\qquad km/h

Bev drove from Reading to Bristol.
Bev's average speed from Reading to Swindon was $80 \mathrm{~km} / \mathrm{h}$.
Her average speed from Swindon to Bristol was $60 \mathrm{~km} / \mathrm{h}$.
Bev says that the average speed from Reading to Bristol can be found by working out the mean of $80 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$.
(b) If Bev is correct, what does this tell you about the two parts of Bev's journey?

7 A company has to make a large number of boxes.
The company has 6 machines.
All the machines work at the same rate.
When all the machines are working, they can make all the boxes in 9 days.
2 of the machines are not working and cannot be used to make the boxes.
Work out the total number of days taken to make all the boxes.

8 Janet bought a new car three years ago.
At the end of the first year the value of the car had decreased by 17.5%
The value of the car decreased by 10% each year for the next two years.
At the end of the three years, the car was worth $£ 16038$
Work out the value of the car when Janet bought it three years ago.

9 Simplify fully $\left(\frac{16 x^{4}}{9 y^{10}}\right)^{-\frac{1}{2}}$

10 Expand and simplify $(2-x)(2 x+3)(x+4)$

11 The box plot shows information about the distribution of the amounts of money spent by some male students on their holidays.

(a) Work out the interquartile range for the amounts of money spent by these male students.
£ \qquad

The table below shows information about the distribution of the amounts of money spent by some female students on their holidays.

	Smallest	Lower quartile	Median	Upper quartile	Highest
Money spent (£)	60	180	300	350	650

(b) On the grid above, draw a box plot for the information in the table

Chris says,
"The box plots show that the female students spent more money than the male students."
(c) Is Chris correct?

Give a reason for your answer.
\qquad
\qquad

12 Using algebra, show that the recurring decimal $0.18 \dot{0} \dot{3}=\frac{119}{660}$

13 Saffron wants to work out an estimate for the total number of fish in a lake.
On Friday, Saffron catches 210 fish from the lake.
She puts a tag on each of these fish and puts them back into the lake.
On Saturday, Saffron catches 240 fish from the same lake.
She finds that 35 of the 240 fish are tagged.
Work out an estimate for the total number of fish in the lake.
$14 \quad P, Q, R$ and S are four points on a circle, centre X.

$P X R$ and $S X Q$ are straight lines.
Prove that triangle $P Q X$ and triangle $S R X$ are congruent.

15 Here is a speed-time graph for a train.

(a) Work out an estimate for the distance the train travelled in the first 20 seconds. Use 4 strips of equal width.
\qquad
(b) Is your answer to (a) an underestimate or an overestimate of the actual distance the train travelled?
Give a reason for your answer.

16 Using algebra, prove that, given any 3 consecutive even numbers, the difference between the square of the largest number and the square of the smallest number is always 8 times the middle number.

17 The straight line L passes through the points $(4,-2)$ and $(6,5)$
The straight line M is perpendicular to L and intersects the y-axis at the point $(0,3)$
Find the coordinates of the point where M intersects the x-axis.

18 Show that $\frac{x}{x+3}-\frac{2 x-1}{x-3}+1$ can be written in the form $\frac{a x+b}{x^{2}-9}$ where a and b are integers.

19 (a) Express $9+8 x-2 x^{2}$ in the form $a+b(x+c)^{2}$ where a, b and c are integers.
\mathbf{C} is the curve with equation $y=9+8 x-2 x^{2}$
The point A is the maximum point on \mathbf{C}
(b) Use your answer to part (a) to write down the coordinates of A

(1)

Triangle \mathbf{A} is transformed by the combined transformation of a reflection in the x-axis, followed by a reflection in the line $x=-2$, followed by a translation with vector $\binom{-4}{2}$

One point on triangle \mathbf{A} is invariant under the combined transformation.
Find the coordinates of this point.
You must show your working.
\qquad , ...ㅈ․․․․․․․․․․․․…)

21 Prove algebraically that the straight line with equation $2 x+y+5=0$ is a tangent to the circle with equation $x^{2}+y^{2}=5$

22 The diagram shows two circles such that the region \mathbf{R}, shown shaded in the diagram, is the region common to both circles.

One of the circles has centre O and radius 5 cm .
The other circle has centre P and radius 4 cm .
Angle $A O B=50^{\circ}$
Calculate the area of region \mathbf{R}.
Give your answer correct to 3 significant figures.

