Mathematics

June 2024 Practice Paper 3 (Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of a prism $=$ area of cross section \times length Where r is the radius and d is the diameter:

Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle ABC where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

1 The frequency table shows the time taken for 100 people to travel to an event.

Time (minutes)	Frequency
$0<\mathrm{t} \leqslant 10$	14
$10<\mathrm{t} \leqslant 20$	16
$20<\mathrm{t} \leqslant 30$	23
$30<\mathrm{t} \leqslant 40$	29
$40<\mathrm{t} \leqslant 50$	12
$50<\mathrm{t} \leqslant 60$	6

Draw a frequency polygon to show this information.

2 Bradley gets the bus on Saturday and Sunday.
The probability that Bradley's bus will be late on any day is 0.15
Bradley draws this probability tree diagram.
The diagram is not correct.

Write down two things that are wrong with the probability tree diagram.

1
\qquad
\qquad

2 \qquad
\qquad
\qquad

3 Matt wants to invest $£ 8000$ for three years. He can choose between Bank A and Bank B.

Bank A
1.2% compound interest
per annum

Bank B

2% compound interest in the first year
1% compound interest
for each extra year

Which bank will give Matt the most interest after three years.
You must show your working.

4 The average daytime temperature for 10 days is recorded.
A shop also records its ice cream sales for each of the 10 days.
The scatter graph shows this information.

(a) What type of correlation does the scatter graph show?
\qquad
(b) On the $11^{\text {th }}$ day the temperature was $12^{\circ} \mathrm{C}$.

Estimate the ice cream sales on the 11th day.

$$
£
$$

\qquad
(c) The shop's manager wants to use the scatter graph to predict the ice cream sales for a day with an average temperature of $2^{\circ} \mathrm{C}$. Comment on the reliability of this prediction.
\qquad
\qquad
$5 \quad$ Find 5% of 3.8×10^{105}
Give your answer in standard form

6 Verity buys 12 bottles of apple juice for a total cost of $£ 15$
Verity sells all 12 bottles at $£ 1.75$ each bottle.
Work out Verity's percentage profit.
$7 \quad y^{2} \times y^{a}=y^{7}$
(a) Find the value of a.
$\left(y^{4}\right)^{b}=y^{12}$
(b) Find the value of b.
\qquad
(1)

8 Change a speed of 81 kilometres per hour to a speed in metres per second

9 The diagram shows a pentagon.

Work out the value of x

10 The density of orange cordial is 1.21 grams per cm^{3}.
The density of carbonated water is 1.01 grams per cm^{3}.
A drink with a volume of $280 \mathrm{~cm}^{3}$ is made by mixing 1 part of orange cordial with 7 parts of carbonated water.

Work out the density of the drink.
$\mathrm{g} / \mathrm{cm}^{3}$

11 There are 5 starters, 6 main courses and x desserts in a restaurant.
Riley says there are 130 different ways of choosing a starter, a main course and a dessert.
Could Riley be correct?
You must show your working.

12 Holly recorded the heights, in centimetres, of some girls.
She used her results to work out the information in this table.

Least height	138 cm
Interquartile range	19 cm
Median	165 cm
Upper quartile	172 cm
Range	44 cm

Draw a box plot for the information in the table.

13

A, B and C are points on the circumference of a circle, centre O.
$D C E$ is a tangent to the circle.
$A B=B C$
Angle $B C E=65^{\circ}$
Find the size of angle $A O C$.
You must show all your working.

14 Make d the subject of $e=\sqrt{\frac{d+e}{d e-2 f}}$

15 Here are the first five terms of a quadratic sequence.
-3
4
14
27
43

Find an expression, in terms of n, for the nth term of this sequence

16 The diagram shows a triangular prism.

$$
\begin{aligned}
& C D=20 \mathrm{~cm} \\
& A D=30 \mathrm{~cm} \\
& \text { Angle } F D C=35^{\circ}
\end{aligned}
$$

Calculate the size of the angle the line $A F$ makes with the plane $A B C D$.
Give your answer correct to 3 significant figures.

17 Prove algebraically that the sum of the squares of any 2 odd positive integers is always even.

18 The functions f and g are such that

$$
\begin{array}{ll}
\mathrm{f}(x)=\frac{3}{6 x+5} & x \neq-\frac{5}{6} \\
\mathrm{~g}(x)=x^{2}-2 & x \geq 0
\end{array}
$$

Solve $\operatorname{fg}(x)=1$

19 (a) Show that the equation $x^{4}-3 x^{3}-7=0$ can be written in the form $x=\sqrt[4]{3 x^{3}+7}$
(b) Starting with $x_{0}=3$
use the iteration formula $x_{n+1}=\sqrt[4]{3 x_{n}^{3}+7}$ three times to find an estimate for a solution to $x^{4}-3 x^{3}-7=0$
$20 \quad B A C$ is a sector of a circle, centre A.
$A C$ is 12 cm .

Find the area of the shaded segment.
Give your answer to 3 significant figures.
\qquad cm^{2}

21

Work out the value of x.
Give your answer to 1 decimal place.

22 Solve $\frac{1}{1-2 x}+\frac{2}{x+3}=3$

23 Prove algebraically that the straight line with equation $3 x-2 y+13=0$ is a tangent to the circle with equation $x^{2}+y^{2}=13$

24 The displacement of an object, s, is given by the formula

$$
s=\frac{v^{2}-u^{2}}{2 a}
$$

where,

$$
\begin{aligned}
& v=15.49 \text { correct to } 2 \text { decimal places } \\
& u=4.92 \text { correct to } 3 \text { significant figures } \\
& a=7.5 \text { correct to } 2 \text { significant figures }
\end{aligned}
$$

By considering bounds, work out the value of s to a suitable degree of accuracy. Show your working clearly and give a reason for your answer.

