Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided — there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets — use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.
Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Write 6819 to the nearest 1000

\[\text{7000} \]

(Total for Question 1 is 1 mark)

2 Write these temperatures in order. Start with the lowest temperature.

\[7^\circ C \quad -2^\circ C \quad 10^\circ C \quad -5^\circ C \quad 3^\circ C \]

\[-5^\circ C, -2^\circ C, 3^\circ C, 7^\circ C, 10^\circ C \]

(Total for Question 2 is 1 mark)

3 Write 0.075 as a fraction. Give your fraction in its simplest form.

\[\frac{75}{1000} \]

\[\frac{3}{40} \]

(Total for Question 3 is 2 marks)

4 Find the value of \(5^4 \)

\[625 \]

(Total for Question 4 is 1 mark)
Living to 100 years old

1 in 3 babies born last year
are expected to live
to 100 years old

720 000 babies were born last year.

How many of these babies are expected to live to 100 years old?

\[
\text{one in three} \\
\frac{1}{3} \text{ of } 720000 \\
\frac{1}{3} \times 720000
\]

\[240000\]

(Total for Question 5 is 2 marks)
6 Here is part of a train timetable from Swindon to London.

<table>
<thead>
<tr>
<th>Swindon to London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swindon</td>
</tr>
<tr>
<td>Didcot</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>London</td>
</tr>
</tbody>
</table>

(a) How long should the 06 58 train from Swindon take to get to London?

Arrives at 08 02

1 hr 4 mins

Clare says,

“All these trains take more than one hour to get from Swindon to London.”

(b) Is Clare correct?

You must give a reason for your answer.

No. The 07 17 gets in at 08 14, (under an hour)

(Total for Question 6 is 2 marks)
7 Tracy buys

2 coffees at £1.10 each
3 teas at 95p each
5 sandwiches at £2.15 each

Tracy shares the total cost equally between 5 people.

How much does each person pay?

\[
\begin{align*}
2 \times 1.10 & = £2.20 \\
3 \times 0.95 & = £2.85 \\
5 \times 2.15 & = £10.75 \\
Total & = £2.20 + £2.85 + £10.75 \\
& = £15.80 \\
\frac{15.80}{5} & = £3.16
\end{align*}
\]

£3.16

(Total for Question 7 is 4 marks)
8 Rachel carried out a survey of 10 people to find out the type of fruit they like best.

The table gives information about her results.

<table>
<thead>
<tr>
<th>Type of fruit</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>2</td>
</tr>
<tr>
<td>banana</td>
<td>5</td>
</tr>
<tr>
<td>orange</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) Which type of fruit is the mode?

In Rachel’s survey, 2 out of 10 people like apples best.

(b) Write 2 out of 10 as a percentage.

\[
\frac{2}{10} \times 100
\]

\[20\%\]
Pete also carried out a survey to find out the type of fruit people like best. He asked 30 people which type of fruit they like best.

He drew this pie chart for his results.

A smaller proportion of people like bananas best in Pete’s survey than in Rachel’s survey.

(c) Explain how Pete’s pie chart and Rachel’s table show this.

Half of the people in Rachel’s survey liked bananas best. This is a greater proportion than Pete’s survey because half would be half of the pie chart. (180°) (2)

(Total for Question 8 is 4 marks)
9 The smallest angle of a triangle is 25°
The triangle is enlarged by scale factor 3

Ben says,

"The smallest angle of the enlarged triangle is 75° because 25 \times 3 = 75"

Is Ben right?
Explain your answer.

No. The lengths will be bigger but the angles do not change.

(Total for Question 9 is 1 mark)
10 Karol ran in a race.

The graph shows her speed, in metres per second, t seconds after the start of the race.

(a) Write down Karol’s speed 3 seconds after the start of the race.

\[\frac{6.5}{6.4 - 6.6} \text{ m/s} \]

(b) Write down Karol’s greatest speed.

\[9.8 \text{ m/s} \]

There were two times when Karol’s speed was 9 m/s.

(c) Write down these two times.

\[5 \text{ seconds} \]

\[9 \text{ seconds} \]

(Total for Question 10 is 3 marks)
11 The first three terms of a number pattern are 1 2 4

Hester says the first five terms of this number pattern are 1 2 4 8 16

(a) Write down the rule Hester could have used to get the 4th and 5th terms.

\[\text{multiply the previous number by 2} \]

(b) Write down the 6th term of Hester’s number pattern.

\[32 \]

Jack uses a different rule.

He says the first six terms of the number pattern are 1 2 4 7 11 16 22 29

(c) Write down the 7th and 8th terms of Jack’s number pattern.

\[22, 29 \]

(Total for Question 11 is 3 marks)
12 Martin has 8 pints of soup in a pan.
 He also has 24 soup bowls.
 He puts 0.3 pints of soup into each bowl.

 How much soup has Martin left over?

\[24 \times 0.3 = 7.2 \text{ pints} \]

\[8 - 7.2 = 0.8 \]

\[0.8 \text{ pints} \]

(Total for Question 12 is 3 marks)

13 Abi invests £500 for 4 years in a bank account.
 The account pays simple interest at a rate of 2.3% per year.

 Work out the total amount of interest Abi has got at the end of 4 years.

\[2.3\% \text{ of } 500 \]

\[2.3\% \times 500 = £11.50 \]

\[£11.50 \times 4 = £46 \]

£46

(Total for Question 13 is 3 marks)
14 The graph shows the cost of using a mobile phone for one month for different numbers of minutes of calls made.

The cost includes a fixed rental charge of £20 and a charge for each minute of calls made.

Work out the charge for each minute of calls made.

£15 for 500 minutes
1500p for 500 minutes
3p per minute

(Total for Question 14 is 2 marks)
15 Here is a list of ingredients for making chocolate mousse for 2 people.

<table>
<thead>
<tr>
<th>Chocolate mousse</th>
</tr>
</thead>
<tbody>
<tr>
<td>for 2 people</td>
</tr>
<tr>
<td>40 grams sugar</td>
</tr>
<tr>
<td>110 grams dark chocolate</td>
</tr>
<tr>
<td>2 eggs</td>
</tr>
<tr>
<td>1/2 teaspoon lemon juice</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Ellie has 250 grams of sugar and 550 grams of dark chocolate. She assumes that she has plenty of lemon juice and plenty of eggs.

(a) What is the greatest number of people Ellie can make chocolate mousse for?
You must justify your answer.

Sugar

- 40g for 2 people
- 20g for 1 person

\[
\frac{250}{20} = 12.5
\]

12 people.

DARK CHOC.

- 110g for 2 people
- 55g for 1 person

\[
\frac{550}{55} = 10
\]

10 people.

Ellie can only make mousse for 10 people, she only has enough dark chocolate to make mousse for 10.

Ellie only has 6 eggs.

(b) What effect would this have on the greatest number of people Ellie can make chocolate mousse for?

Yes. 6 eggs would mean she can only make 6 mousses.

(Total for Question 15 is 4 marks)
16 A sprinter runs a distance of 200 metres in 25 seconds.

Work out the average speed of the sprinter.

\[
\text{speed} = \frac{\text{distance}}{\text{time}}
\]

\[
= \frac{200}{25} = 8 \text{ m/s}
\]

(Total for Question 16 is 1 mark)

17 (a) Simplify \(7x + 2y - 3x + 4y\)

\(4x + 6y\) (2)

(b) Factorise \(10x - 15\)

\(5(2x - 3)\) (1)

(c) Solve \(5p = 3p + 8\)

\(-2p = 8\)

\(p = 4\) (2)

(Total for Question 17 is 5 marks)
18 There are 64 cards in a pack.
Each card is either red or black.
The ratio of the number of red cards to the number of black cards is 1 : 1

8 red cards are removed from the pack.

Find the ratio of the number of red cards now in the pack to the number of black cards now in the pack.
Give your answer in its simplest form.

\[
\frac{R}{32} : \frac{B}{32} = \frac{64}{2} = 32
\]

\[
32 - 8 : 32
\]

\[
24 : 32
\]

\[
3 : 4
\]

(Total for Question 18 is 3 marks)
19 Here are a 4-sided spinner and a 5-sided spinner.

The spinners are fair.

![Spinning Spinners]

Jeff is going to spin each spinner once.
Each spinner will land on a number.
Jeff will get his score by adding these two numbers together.

(a) Complete the possibility space diagram for each possible score.

\[
\begin{array}{c|c|c|c|c|c}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 2 & \circled{3} & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

(b) Find the probability that Jeff gets
(i) a score of 3

\[\frac{2}{20}\]
(ii) a score of 5 or more.

\[
\frac{14}{20} \quad \text{or} \quad \frac{7}{10} \quad \frac{10}{20}
\]

(Total for Question 19 is 3 marks)

20 Water flows through a pipe at a rate of 20 gallons per minute.

1 gallon = 4.55 litres.

Change 20 gallons per minute to litres per second.
Give your answer correct to 3 significant figures.

\[4.55 \times 20 = 91\]

91 litres per minute

\[91 \div 60 = 1.516 \text{ litres per second}\]

1.52 (3sf)

\[1.52 \text{ litres per second}\]

(Total for Question 20 is 2 marks)
21 Find the highest common factor (HCF) of 32, 48 and 72

\[2 \times 2 \times 2 = 8\]

(Total for Question 21 is 2 marks)

22

Describe the single transformation that maps shape A onto shape B.

translation by \((-3, -3)\)

(Total for Question 22 is 2 marks)
23 The time series graph shows information about the percentages of the people in a village that used the village shop for the years between 1980 and 2010.

(a) Describe the trend in the percentage of the people in the village who used the shop for this period.

The percentage of people who used the shop has decreased.

(b) (i) Use the graph to predict the percentage of the people in the village likely to use the shop in the year 2020.

The predicted percentage is 14%.

(ii) Is your prediction reliable? Explain your answer.

No, 2020 is not within the dataset provided. We cannot know if the same trend will continue.

(Total for Question 23 is 4 marks)
24 (a) Expand and simplify $3(y - 2) + 5(2y + 1)$

\[3y - 6 + 10y + 5 \]

\[13y - 1 \]

(2 marks)

(b) Simplify $5u^3w^4 \times 7uw^3$

\[35u^3w^7 \]

(2 marks)

(Total for Question 24 is 4 marks)
The diagram shows a regular octagon and a regular hexagon.

Find the size of the angle marked x
You must show all your working.

$$\text{External angle octagon } \frac{360}{8} = 45^\circ$$
$$\text{Internal angle } = 180 - 45 = 135^\circ$$
$$\text{External angle hexagon } = \frac{360}{6} = 60^\circ$$
$$\text{Internal angle hexagon } = 180 - 60 = 120^\circ$$

$$360 - 120 - 135 = 105^\circ$$

$x = 105^\circ$

(Total for Question 25 is 3 marks)
26 Here is a Venn diagram.

(a) Write down the numbers that are in set

(i) \(A \cup B \)

\[10, 12, 14, 15, 16, 18 \]

(ii) \(A \cap B \)

\[12, 18 \]

(2)

One of the numbers in the diagram is chosen at random.

(b) Find the probability that the number is in set \(A' \)

\[\frac{3}{10} \]

(2)

(Total for Question 26 is 4 marks)
27 On a farm

the number of cows and the number of sheep are in the ratio 6:5
the number of sheep and the number of pigs are in the ratio 2:1

The total number of cows, sheep and pigs on the farm is 189

How many sheep are there on the farm?

\[
\frac{C}{S} = \frac{5}{2} \quad \frac{5}{p} = \frac{2}{1} \\
6 : 5 : 2.5
\]

\[
12 : 10 : 5
\]

\[
\frac{189}{27} = 7 \quad 7 \times 10 = 70
\]

(Total for Question 27 is 3 marks)
The arc ABC is a quarter of a circle with centre O and radius 4.8 cm. AC is a chord of the circle.

Work out the area of the shaded segment.
Give your answer correct to 3 significant figures.

$$\text{Area of circle} = \pi r^2$$
$$= \pi (4.8)^2$$
$$= 72.3829474...$$

$$\text{Area of quarter circle} = \frac{\pi r^2}{4}$$
$$= 18.09557368 \text{ cm}^2$$

$$\text{Area of triangle} = \frac{1}{2} \times \text{base} \times \text{height}$$
$$= \frac{1}{2} \times 4.8 \times 4.8$$
$$= 11.52 \text{ cm}^2$$

$$\text{Shaded segment} = 18.09557368 - 11.52$$
$$= 6.58 \text{ cm}^2$$

(Total for Question 28 is 3 marks)
ABC is an isosceles triangle with $BA = BC$.

D lies on AC.
ABD is an isosceles triangle with $AB = AD$.

Angle $ABD = 72^\circ$

Show that the triangle BCD is isosceles.
You must give a reason for each stage of your working.

\[
AB = BC \quad \text{and} \quad AB = AD \implies AB = AD
\]

\[
\hat{AB} = 72^\circ \quad \text{Angles at the base of an isosceles triangle are equal}
\]

\[
\hat{BAD} = 180 - 72 - 72 = 36^\circ \quad \text{Angles in a triangle sum to 180}^\circ
\]

\[
\hat{BCD} = 36^\circ \quad \text{Angles at the base of an isosceles triangle are equal}
\]

\[
\hat{BDC} = 180 - 72 \quad \text{Angles on a straight line sum to 180}^\circ = 108^\circ
\]

\[
\hat{CBD} = 36^\circ \quad \text{Angles in a triangle sum to 180}^\circ
\]

BCD is isosceles as $\hat{BCD} = \hat{CBD}$

(Total for Question 29 is 5 marks)