Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/
NOTES ON MARKING PRINCIPLES

1 Types of mark
 M marks: method marks
 A marks: accuracy marks
 B marks: unconditional accuracy marks (independent of M marks)

2 Abbreviations
 cao – correct answer only
 ft – follow through
 isw – ignore subsequent working
 oe – or equivalent (and appropriate)
 SC: special case
 dep – dependent
 indep - independent

3 No working
 If no working is shown then correct answers normally score full marks
 If no working is shown then incorrect (even though nearly correct) answers score no marks.

4 With working
 If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
 If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
 If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
 If there is no answer on the answer line then check the working for an obvious answer.
 Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
 If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

5 Follow through marks
 Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

6 **Ignoring subsequent work**
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

7 **Probability**
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

8 **Linear equations**
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 **Parts of questions**
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

10 **Money notation**
Accepted with and without the “p” at the end.

11 **Range of answers**
Unless otherwise stated, when any answer is given as a range (e.g 3.5 – 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1).
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 | (a) 4.636809….. ÷ 3.44 | 1.3479(09665…) | 2 | M1 for 4.63(6809…..) or 3.44 seen or $\frac{86}{25}$
| | | | | A1 for 1.3479(09665…) |
| | (b) | 1.35 | 1 | B1 ft for 1.35 |
| 2 | $\frac{3500 \times 2.5 \times 3}{100}$ | 262.50 | 3 | M1 for $\frac{3500 \times 2.5}{100}$ oe (=87.5) or 3500×1.025
| | | | | M1 for ’87.5’ x 3 or 3500 + ’87.5’x3
| | | | | A1 for 262.5 or 262.50
| | | | | SC: B2 for 3762.50 or 3762.5 if M0 scored
| | | | | SC : B2 for 269.12 or 269.11
<p>| | | | | (B1 for 3769.12 or 3769.11) |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(a)</td>
<td>Overlapping boxes
 Not exhaustive
 No time period stated</td>
<td>2</td>
<td>1<sup>st</sup> aspect : no time frame
 2<sup>nd</sup> aspect : overlapping boxes
 3<sup>rd</sup> aspect : not exhaustive boxes ie. no < 1
 B2 for 2 aspects
 (B1 for 1 aspect)</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>Example: “How many hours a day do you listen to music”
 0 to 3, over 3 to 5, over 5</td>
<td>2</td>
<td>1<sup>st</sup> aspect : question including time frame and units (or question and time frame in response boxes)
 2<sup>nd</sup> aspect : at least 3 boxes – all non-overlapping with discrete values or a range; need not be inclusive of all or a set of at least 3 boxes which are exhaustive for all integer numbers of hours (but which may overlap)
 NB : Do not accept the use of inequalities with response boxes
 B2 for 2 aspects
 (B1 for 1 aspect)</td>
</tr>
<tr>
<td>4</td>
<td>(a)</td>
<td>6</td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>60</td>
<td>2</td>
<td>M1 for at least 4, 8, 12 and 5, 10, 15 and 6, 12, 18
 A1 cao
 or
 M1 for 2×2×3×5 or identifying 2, 2, 3, 5
 A1 cao
 SC : B1 for any other multiple of 60</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 5 | 2800 ÷ (13 + 12 + 10) = 80p / share
80 × 12 = 960
960 × \(\frac{2}{3}\)
M1 for 2800 ÷ (13 + 12 + 10) (=80) or 28 ÷ (13 + 12 + 10) (=0.8) or 80 or 0.8 or 10.4(0) or 1040 or 8 or 800
or \(\frac{13}{35}\) or \(\frac{12}{35}\) or \(\frac{10}{35}\) oe seen
M1 for ‘80’ × 12 (=960) or ‘0.80’ × 12 (=9.6(0)) or
\(\frac{12}{35}\) × 2800 or \(\frac{12}{35}\) × 28
M1 (indept) for \(\times\) \(\frac{2}{3}\) oe
A1 for £6.40 or 640 pence [accept 6.4]
SC : B2 for answer of 10 supported by working | 6.40 | 4 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(a) $2x - 10 + x + 50$ (ext angle of a triangle = sum of interior opp angles) OR $180 - (2x - 10 + x + 50) = 140 - 3x$ (sum of the angles in a triangle = 180) $180 - (140 - 3x)$ (sum of the angles on a straight line = 180)</td>
<td>Show result, with reasons</td>
<td>3</td>
<td>M1 for $2x - 10 + x + 50$ or $2x + x$ and $50 - 10$ A1 for completing the algebra to complete the proof and showing $y = 3x + 40$ B1 for ‘ext angle of a triangle = sum of interior opp angles’ OR M1 for $180 - (2x - 10 + x + 50)$ or $140 - 3x$ seen A1 for completing the algebra to complete the proof and showing $y = 3x + 40$ B1 for ‘sum of the angles in a triangle = 180’ oe and ‘sum of the angles on a straight line = 180’ oe</td>
</tr>
<tr>
<td></td>
<td>(b)(i) $3x = 145 - 40 = 105$ $105 ÷ 3$ $35 + 50 = 85$</td>
<td>35</td>
<td>4</td>
<td>M1 for clear attempt to subtract 40 from both sides of the equation or divide all 3 terms by 3 or $(3x =) 145 - 40$ or 105 seen A1 cao</td>
</tr>
<tr>
<td></td>
<td>(ii) $2 \times 35 - 10 = 60$ $180 - 145 = 35$</td>
<td>85</td>
<td></td>
<td>M1 ft for $2 \times '35' - 10$ or $'35' + 50$ or $180 - 145$ or can be implied by sight of 85 or 60 or for substituting ‘35’ in order to find at least one angle implied by sight of 85 or 60 A1 for 85 or ft for ‘35’ provided ‘x' < 47</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 7 | $\frac{1}{2} \times 8 \times 15 = 60$
$60 \div 12$ | 5 | 4 | M1 for $\frac{1}{2} \times 8 \times 15 (=60)$ or $12x$ or $12 \times ?$ oe
M1 (dep) for equating ‘area of triangle’ to ‘area of rectangle’ (‘areas’ must be dimensionally correct) eg. $\frac{1}{2} \times 8 \times 15 = 12x$ or $60 = 12x$ (NB. x may have a numerical value)
M1 (indep) for ‘60’ $\div 12$
A1 cao
SC : B3 for an answer of 10 |
| 8 | (a) $\pi \times 6 \times 2$ | 37.7 | 2 | M1 for $\pi \times 12$ or $\pi \times 2 \times 6$
A1 for 37.6-37.8 |
| | (b) $(100 \div 12) \times (50 \div 12) = 8 \times 4$ whole CDs | 36 | 2 | B2 for 33, 34, 35, 36
or
M1 for $(100 \div 12) \times (50 \div 12)$ oe 8×4
A1 for 32
SC : B1 for 44 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>$1 \div 1.14 = 0.877\ldots$ is worse than 0.86 OR $1 \div 0.86 = 1.162\ldots$ is better than 1.14 OR Change say £100 $1.14 \times 100 = 114$ $100 \times \frac{1}{0.86} = 116.28$</td>
<td>Paris since 1.16..> 1.14</td>
<td>3</td>
<td>M1 for an attempted conversion using 1.14 or 0.86 A1 for arriving at two comparable amounts of money in the same currency A1 for Paris with correct figures</td>
</tr>
<tr>
<td>10</td>
<td>$(12 \times 2 + 16 \times 8 + 20 \times 14 + 24 \times 23 + 28 \times 9 + 32 \times 4) \div 60 = (24 + 128 + 280 + 552 + 128) \div 60 = 1364 \div 60$ Alternative $(12.5 \times 2 + 16.5 \times 8 + 20.5 \times 14 + 24.5 \times 23 + 28.5 \times 9 + 32.5 \times 4) \div 60 = (25 + 132 + 287 + 563.5 + 256.5 + 130) \div 60 = 1394 \div 60$</td>
<td>22.7</td>
<td>4</td>
<td>M1 for fx consistently within intervals including the ends (allow 1 error) M1 (dep) for use of all correct mid-interval values (allow 12 – 12.5 etc) M1 (dep on 1st M1) for $\sum fx + \sum f$ A1 for 22.7 – 23.23…</td>
</tr>
<tr>
<td>11</td>
<td>(a) m^9</td>
<td></td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(b) p^6</td>
<td></td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(c) $16n^{12}$</td>
<td></td>
<td>2</td>
<td>B2 cao (B1 for an^{12} or $16n^k$ or 2^n3^k or $16 + n^{12}$)</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>12 (a)</td>
<td></td>
<td>−2, −1, 0, 1, 2, 3, 4</td>
<td>2</td>
<td>B2 for all 7 correct values; ignore repeats, any order (-1 for each omission or additional value)</td>
</tr>
<tr>
<td>(b)</td>
<td>$4x > 10$</td>
<td>$x > 2.5$</td>
<td>2</td>
<td>M1 for $4x > 11 − 1$ or clear attempt to subtract 1 from both sides or clear attempt to divide all 3 terms by 4 or $4x > 10$ or $4x = 10$ or $4x < 10$ etc A1 $x > 2.5$ oe [SC: B1 for 2.5 oe seen if M0 scored]</td>
</tr>
<tr>
<td>13 (a)</td>
<td></td>
<td>6, 4.5, 3, 1.5, 0, −1.5</td>
<td>2</td>
<td>B2 for all 3 correct values of y [B1 for 1 or 2 correct values of y]</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td>Single straight line from (−2, 6) to (3, −1.5)</td>
<td>2</td>
<td>B2 for a straight line from (−2, 6) to (3, −1.5) [B1 for 5 of their points correctly plotted ±1 sq or a single line passing through (0, 3) or a single line of gradient −1.5]</td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td>−1.5 oe</td>
<td>2</td>
<td>M1 for a right-angled triangle drawn on their line graph with vertical and horizontal lengths correct for their triangle or sight of −1.5 oe or 1.5 oe or $\frac{2}{3}$ oe or $-\frac{2}{3}$ oe or $\frac{3}{2}$ or $-\frac{3}{2}$ A1 (ft their single line graph) for −1.5 oe or M1 for a correct full method to rearrange the equation to make y the subject or sight of $y = k − 1.5x$ or $y = −1.5x$ or $−1.5x$ or $y + 1.5x = k$ A1 for −1.5 oe</td>
</tr>
</tbody>
</table>
Question 14

Working

- (a) \(2(3x + 2)\)
- (b) \(3xy(3x - 5)\)

Answer

- (a) \(2(3x + 2)\)
- (b) \(3xy(3x - 5)\)

Mark

- (a) 1
- (b) 2

Notes

- (a) B1 cao
- (b) B2 cao
 - (B1 for \(3x(3xy - 5y)\) or \(3y(3x^2 - 5x)\) or \(xy(9x - 15)\) or a factor of \(3xy(a - b)\) or \(3xy(3x + 5)\))

Question 15

Working

- (a) \((34 + 46 + 28) ÷ 3\)
- (b) \((46 + 28 + 40) ÷ 3\)

Answer

- (a) 36
- (b) 38

Mark

- (a) 2
- (b) 1

Notes

- (a) M1 for either \((34 + 46 + 28) ÷ 3\) or \((46 + 28 + 40) ÷ 3\)
 - (condone missing brackets) or
 - one of 36 or 38 in correct position on answer lines
 - A1 cao
- (b) B1 for upwards or increasing oe or ft from part (a)
 - (SC: If no marks scored B1 for 38, 36)

Question 16

Working

- (a) 55
- (b) 23
- (c) Box plot
- (d) Eg: Adults greater spread, greater iqr, higher median, etc

Mark

- (a) 1
- (b) 2
- (c) 2
- (d) 2

Notes

- (a) B1 cao
- (b) M1 for \(k - 47\) or \(47 - k\) or \(70 - k\) or \(k - 70\) where \(k\) can be any value
 - A1 cao
- (c) B2 for a fully correct box plot \(±\frac{1}{2}\) square
 - (B1 for 3 correctly plotted points with box or whiskers drawn in)
- (d) B1 for a correct comparison of a specific value (lowest, highest, median, UQ, LQ)
 - B1 for a correct comparison of spread (iqr, range)
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 17 | $\frac{15 + 6}{15} \times 12.5$ | 17.5 | 3 | M1 for $\frac{DE}{12.5} = \frac{15 + 6}{15}$ or $\frac{15}{15 + 6}$ or $\frac{7}{5}$ or $\frac{5}{2}$ or $\frac{5}{2}$ (1.4 or 0.4 or 2.5 or 0.714…)
| | | | | M1 for $\frac{15 + 6}{15} \times 12.5$ or $\frac{7}{5} \times 12.5$ oe |
| | | | | or $12.5 + \frac{2}{5} \times 12.5$ oe |
| | | | | A1 cao |
| 18 | 9×100 | 900 | 2 | M1 for 10×10 (=100) or 9×100 or $1cm^2 = 100mm^2$ or 30×30
<p>| | | | | A1 cao |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>$x^2 + 3 = 7x$
$x^2 - 7x + 3 = 0$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 3}}{2}$
OR
$(x - 3.5)^2 = 3.5^2 - 3 = 9.25$
$x - 3.5 = \pm \sqrt{9.25}$</td>
<td>$7 \pm \sqrt{37}$
OR
$3.5 \pm \sqrt{9.25}$</td>
<td>3</td>
<td>M1 for $x^2 + 3 = 7x$ oe or clear intention to multiply all terms by x
M1 for $x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 3}}{2}$ ft from a quadratic equation of the form $ax^2 + bx + c = 0$ where $a,b,c \neq 0$; condone wrong signs for a, b, c in substitution
A1 for $3.5 \pm \sqrt{9.25}$ as the final exact solution
OR
M1 for $x^2 + 3 = 7x$ oe or clear intention to multiply all terms by x
M1 for $(x - 3.5)^2 = 3.5^2 - 3 = 0$ ft from a quadratic equation of the form $ax^2 + bx + c = 0$ where $a,b,c \neq 0$
A1 for $3.5 \pm \sqrt{9.25}$</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 20 (a) | $\frac{8}{\sin 62}$ | 9.06 | 3 | M1 for $\sin 62 = \frac{8}{PR}$ or $\cos(90-62) = \frac{8}{PR}$
$\sin 90 = \frac{\sin 62}{PR} = \frac{8}{\text{oc}}$
M1 for (PR=) $\frac{8}{\sin 62}$ or $\frac{8}{\cos(90-62)}$
or $\sin 90 \times \frac{8}{\sin 62}$
A1 for 9.06 – 9.061
SC: B2 for -10.82 to -10.83 using rad or 9.672 to 9.674 using grad
or
For methods involving trig or Pythagoras and then trig or Pythag
No marks until a correct trig or pythag statement linking SR = 4.25(36...) and PR
For example
M1 for (PR²) $8^2 + 4.25(36\ldots)^2$ or
$\cos 62 = \frac{4.25(36\ldots)}{PR}$
M1 for $\sqrt{64 + 18.0(9\ldots)}$ or $\frac{4.25(36\ldots)}{\cos 62}$
A1 9.06 – 9.061 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 20 (b) | $QR^2 = 14^2 + 9.06^2 - 2 \times 14 \times 9.06 \cos 62$
$= 196 + 82.08 - 253.68 \cos 62$
$= 158.98 \ldots$ | 12.6 | 4 | B1 for angle $QPR = 62^\circ$
M1 for $QR^2 = 14^2 + 9.06^2 - 2 \times 14 \times 9.06 \times \cos 62$
M1 for correct order of evaluation or 158.9…
A1 (ft PR) for 12.6 – 12.62

or
For methods using trigonometry and Pythagoras
No marks until a correct Pythag statement with QR as only unknown
(LET M be on PQ such that angle RMQ is 90°)
For example
B1 for angle $QPR = 62^\circ$
M1 for $(QR^2 =) 8^2 + (14 - PR \cos 62)^2$
M1 for $\sqrt{64 + 94.995 \ldots}$ or 158.9…
A1 (ft PR) for 12.6 – 12.62
SC: B3 for 10.3(5511) or 10.4 using rad or 11.6(402014) using grad |

| 21 (a) | 34, 12 | 2 | M1 for frequency = $fd \times$ column width, can be implied by one frequency correct
or fd correctly marked on vertical axis (1 cm = 4 units)
or identifying 1 cm² as frequency of 4 oe
A1 34 and 12 both correct |

| 21 (b) | Bars of height 6 cm and 4.5 cm | 2 | B1 for bar of height 6 cm
B1 for bar of height 4.5 cm |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 22 | *AM = MC* (given *M* is midpoint) | Proof | 3 | **M1** for either *AM = MC* or *AL = LB* or *BN = NC*
M1 for either *LB = MN* or *BN = LM*
A1 for conclusion of congruency (e.g. SSS) with all three sides shown as equal |
| | *AL = LB* (given *L* is midpoint) | | | **OR**
M1 for *AM = MC*
M1 for either Angle *ALM = angle ABN = angle MNC*
**Angle AML = angle MCN* (corresponding angles)
triangles are congruent ASA
OR
**Angles CNM = Angles NML* (alternate angles)
**Angle NML = Angle MLA* (alternate angles)
Therefore Angle MLA = Angle CNM
[Then lines 2 to 7 of the first method]
triangles are congruent SAS |
| | *LB = MN* (opp sides of a parallogram) | | | **OR**
M1 for either *AM = MC* or *AL = LB* or *BN = NC*
A1 for conclusion of congruency (e.g. SAS) with two sides and one angle shown to be equal |
| | *BN = LM* (opp sides of a parallogram) | | | **OR**
M1 for *AM = MC*
M1 for either Angle *ALM = angle ABN = angle MNC*
**Angle AML = angle MCN* (corresponding angles)
**Angles CNM = Angles NML* (alternate angles)
**Angle NML = Angle MLA* (alternate angles)
Therefore Angle MLA = Angle CNM
[Then lines 2 to 7 of the first method]
triangles are congruent SAS |
| | *BN = NC* (given *N* is midpoint) | | | **OR**
M1 for *AM = MC*
M1 for either Angle *ALM = angle ABN = angle MNC*
**Angle AML = angle MCN* (corresponding angles)
**Angles CNM = Angles NML* (alternate angles)
**Angle NML = Angle MLA* (alternate angles)
Therefore Angle MLA = Angle CNM
[Then lines 2 to 7 of the first method]
triangles are congruent SAS |

SC : Include appropriate pair of sides (e.g. *LM = NC*) with justification of mid-point rule in any of above
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>(a) $x(x + p) + q(x + p)$</td>
<td>$(x + p)(x + q)$</td>
<td>2</td>
<td>M1 for $x(x + p) + q(x + p)$ or $x(x + q) + p(x + q)$ A1 cao</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>$(m - 2)(m + 2)$</td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(c) $\frac{2(x + 3) - (x - 4)}{(x - 4)(x + 3)}$</td>
<td>$\frac{x + 10}{(x - 4)(x + 3)}$</td>
<td>3</td>
<td>M1 for common denominator of $(x - 4)(x + 3)$ M1 for $\frac{2(x + 3)}{(x - 4)(x + 3)} - \frac{(x - 4)}{(x - 4)(x + 3)}$ oe condone missing brackets around $x - 4$ A1 for $\frac{x + 10}{(x - 4)(x + 3)}$ or $\frac{x + 10}{x^2 - x - 12}$</td>
</tr>
<tr>
<td>24</td>
<td>$3 \times \pi \times 8^2$</td>
<td>603</td>
<td>3</td>
<td>M1 for $\frac{1}{2} \times 4 \times \pi \times 8^2$ oe ($= 402.12\ldots$) M1 (dep) for ‘$402^2 + \pi \times 8^2$’ or 192π A1 for $603 - 603.23$</td>
</tr>
<tr>
<td>25</td>
<td>642.5×397.5</td>
<td>255000</td>
<td>3</td>
<td>B1 for 642.5 or 647.5 or 397.5 or 402.5 seen M1 for $l_{LB} \times w_{LB}$ where $642.5 \leq l_{LB} < 645$ and $397.5 \leq w_{LB} < 400$ A1 for 255393.75 or 255000 coming from 255393.75 or from correct method</td>
</tr>
</tbody>
</table>