1380/4H
Edexcel GCSE
Mathematics (Linear) – 1380
Paper 4 (Calculator)
Higher Tier
Friday 10 June 2011 – Morning
Time: 1 hour 45 minutes

Materials required for examination
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Items included with question papers
Nil

Instructions to Candidates
In the boxes above, write your centre number, candidate number, your surname, initials and signature.
Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
You must NOT write on the formulae page.
Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 26 questions in this question paper. The total mark for this paper is 100.
There are 24 pages in this question paper. Any blank pages are indicated.
Calculators may be used.
If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Advice to Candidates
Show all stages in any calculations.
Work steadily through the paper. Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.
GCSE Mathematics (Linear) 1380

Formulae: Higher Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Volume of a prism = area of cross section × length

Volume of sphere = \(\frac{4}{3} \pi r^3 \)
Surface area of sphere = \(4\pi r^2 \)

Volume of cone = \(\frac{1}{3} \pi r^2 h \)
Curved surface area of cone = \(\pi rl \)

In any triangle ABC

The Quadratic Equation
The solutions of \(ax^2 + bx + c = 0 \)
where \(a \neq 0 \), are given by
\[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Sine Rule \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine Rule \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} ab \sin C \)
Answer ALL TWENTY SIX questions.
Write your answers in the spaces provided.
You must write down all the stages in your working.

1. Each student at a college studies one of four languages.

The table shows the probability a student chosen at random studies German or Russian or French.

<table>
<thead>
<tr>
<th>Language</th>
<th>German</th>
<th>Spanish</th>
<th>Russian</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

A student is chosen at random. All add to 1.

(a) Work out the probability that the student studies Spanish.

\[1 - 0.8 = 0.2 \]

(b) Work out the number of students who study German.

\[0.2 \times 800 = 160 \]

(Total 4 marks)
2. On the grid, enlarge the shape with a scale factor of $\frac{1}{2}$, centre P.

(Total 3 marks)

3. (a) Express 45 as a product of its prime factors.

\[45 \]
\[5 \]
\[3 \times 3 \times 5 \]

(b) Find the Highest Common Factor (HCF) of 45 and 30

\[30 \]
\[3 \times 5 \]
\[2 \times 3 \times 5 \]

\[30 \]
\[3 \times 5 \]
\[2 \]
\[3 \]
\[3 \]
\[15 \]

(Total 4 marks)
4. On the grid, draw the graph of \(y = 4x - 2 \)

\[
\begin{array}{c|c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 & 3 \\
 \hline
 y & -10 & -6 & -2 & 2 & 6 & 10 \\
\end{array}
\]
5. The diagram shows a circular pond with a path around it.

The pond has a radius of 5 m.
The path has a width of 1 m.

Work out the area of the path.
Give your answer correct to 3 significant figures.

\[
\begin{align*}
\text{Radius of big circle} &= 6 \text{ m} \\
\text{Area of big circle} &= \pi \times 6^2 = 36\pi \\
\text{Area of small circle} &= \pi \times 5^2 = 25\pi \\
\text{Area of path} &= 36\pi - 25\pi \\
&= 11\pi \\
&= 34.6 \text{ m}^2 \quad (3\text{sf})
\end{align*}
\]

\(34.6 \text{ m}^2\) Q5
(Total 3 marks)
6. Here are the ages, in years, of 16 people.

\[\begin{array}{c}
36 & 48 & 48 & 25 & 36 & 28 & 48 & 36 \\
38 & 27 & 31 & 16 & 36 & 48 & 28 & 24
\end{array}\]

(a) Draw an ordered stem and leaf diagram to show this information.
You must include a key.

\[
\begin{array}{c|cc}
1 & 6, 8 \\
2 & 1, 5, 7, 8, 8 \\
3 & 0, 6, 6, 6, 8 \\
4 & 1, 5, 8, 8
\end{array}
\]

Key:

\[
116 = 16 \text{ years}
\]

(b) Find the median age.

\[
\frac{30 + 36}{2} = 33
\]

\[
33 \text{ years}
\]

(Total 5 marks)
7. Bob has 120 beads. The beads are either red or green. \[\frac{3}{4} \times 120 = 90 \]
Bob gives \(\frac{3}{4} \) of the beads to his friend. 90 beads, 30 left.
\(\frac{2}{3} \) of the beads Bob now has are red.
Work out how many green beads Bob now has.
\[\frac{2}{3} \times 30 = 20 \text{ (red beads)} \]
\[30 - 20 = 10 \text{ (green beads)} \]

(Total 3 marks)

8. Rotate the shape 90° clockwise, centre \(O \).

(Total 2 marks)
Work out the total surface area of the triangular prism.

\[\frac{1}{2} \times 8 \times 15 = 60 \quad (2 \text{ of these}) \]
\[17 \times 10 = 170 \]
\[8 \times 10 = 80 \]
\[15 \times 10 = 150 \]
\[60 + 60 + 170 + 80 + 150 = 520 \text{ cm}^2 \]

(Total 4 marks)

Diagram NOT accurately drawn
10. (a) Simplify \(6e^{(5f)} + e^{-3f}\)

\[\frac{7e + 2f}{\text{(2)}}\]

(b) Solve \(4(2x - 1) = 3x - 19\)

\[\begin{align*}
8x - 4 &= 3x - 19 \\
-3x &= -15 \\
x &= -5
\end{align*}\]

\[x = -3 \text{ (3)}\]

(c) Solve \(\frac{y + 4}{5} = 30\)

\[\begin{align*}
y + 4 &= 150 \\
-4 &= -4 \\
y &= 146
\end{align*}\]

\[y = 146 \text{ (2)}\]

(Total 7 marks)
11. Bianca asked 32 women about the number of children they each had.

The table shows information about her results.

<table>
<thead>
<tr>
<th>Number of children</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>more than 4</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Find the mode.

Most common

\[\frac{52}{32} = 1.625 \]

(b) Calculate the mean.

\[\frac{1.625}{32} \]

(Total 4 marks)
12. The equation

\[x^3 + 5x = 67 \]

has a solution between 3 and 4

Use a trial and improvement method to find this solution.
Give your answer correct to one decimal place.
You must show ALL your working.

<table>
<thead>
<tr>
<th>(x)</th>
<th>((x)^3 + 5(x))</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>((3.5)^3 + 5(3.5))</td>
<td>= 60.375 too low</td>
</tr>
<tr>
<td>3.6</td>
<td>((3.6)^3 + 5(3.6))</td>
<td>= 64.656 too low</td>
</tr>
<tr>
<td>3.7</td>
<td>((3.7)^3 + 5(3.7))</td>
<td>= 69.153 too high</td>
</tr>
<tr>
<td>3.65</td>
<td>((3.65)^3 + 5(3.65))</td>
<td>= 66.87125 too low</td>
</tr>
</tbody>
</table>

\[x = \boxed{3.7} \]

(Total 4 marks)

13. Use your calculator to work out

\[\sqrt{\frac{920 - 170 \tan 65^\circ}{0.012 + 0.034}} \]

(a) Write down all the figures on your calculator display.
You must write your answer as a decimal.

\[
1.098847047
\]

(2)

(b) Give your answer to part (a) correct to 3 significant figures.

\[
110
\]

(1)

(Total 3 marks)
14. The table shows six expressions.
 \(n \) is a positive integer.

\[
\begin{array}{cccccc}
2n - 3 & 3n - 2 & 3(n + 4) & 4n + 1 & 4(3n + 1) & 2n + 1 \\
\end{array}
\]

(a) From the table, write the expression whose value is

(i) always even

\[4(3n + 1)\]

(ii) always a multiple of 3

\[3(n + 4)\]

(2)

(b) From the table, write the expression which is a factor of \(4n^2 - 1\)

\[4n^2 - 1 = (2n + 1)(2n - 1)\]

\[2n + 1\]

(1) Q14

(Total 3 marks)

15. (a) \(x > -3\)

Show this inequality on the number line.

\[\begin{array}{cccccc}
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\end{array}\]

(2)

(b) Solve the inequality \(7y + 36 \leq 8\)

\[\begin{align*}
-36 & \quad -36 \\
7y & \leq -28 \\
y & \leq -4 \\
\end{align*}\]

\[y \leq -4\]

(2) Q15

(Total 4 marks)
16. In a sale the normal price of a book is reduced by 10%.
 The sale price of the book is £4.86

 Calculate the normal price of the book.

 \[£4.86 = 90\% \]
 \[£0.054 = 1\% \]
 \[£5.40 = 100\% \]

 £5.40

 (Total 3 marks)
17. The diagram shows two similar triangles.

Diagram NOT accurately drawn

In triangle ABC, $AB = 10\text{ cm}$ and $AC = 18\text{ cm}$.
In triangle PQR, $PQ = 6\text{ cm}$ and $QR = 12\text{ cm}$.

Angle $ABC = \text{angle } PQR$.
Angle $CAB = \text{angle } RPQ$.

(a) Calculate the length of BC.

$$12 \times \frac{10}{6}$$

$$20\text{ cm}$$

(2 marks)

(b) Calculate the length of PR.

$$18 \div \frac{10}{6}$$

$$10.8\text{ cm}$$

(2 marks)

(Total 4 marks)
18. (a) Simplify \((c^2k^5)^4\)
\[
C^8k^{20}
\]

(b) Expand and simplify \((3x + 5)(4x - 1)\)
\[
12x^2 - 3x + 20x - 5
\]
\[
12x^2 + 17x - 5
\]

(c) Solve \(x^2 - 3x - 10 = 0\)
\[
(x - 5)(x + 2) = 0
\]
\[
x = 5 \quad x = -2
\]
x = 5 and \(x = -2\)

(Total 6 marks)

19. The surface area of Earth is 510,072,000 km².
The surface area of Jupiter is \(6.21795 \times 10^{10}\) km².

The surface area of Jupiter is greater than the surface area of Earth.
How many times greater?
Give your answer in standard form.
\[
\frac{6.21795 \times 10^{10}}{510,072,000} = 1.219033783 \times 10^2
\]
\[
1.22 \times 10^2 \quad (3sf)
\]

(Total 3 marks)
20. The table shows some expressions.
 \(a, b, c\) and \(d\) represent lengths.
 \(\pi\) and 2 are numbers that have no dimensions.

<table>
<thead>
<tr>
<th>(c^2(b + d))</th>
<th>(\pi a^2 c^2)</th>
<th>(\frac{a^3 b}{c^3})</th>
<th>(\pi a^2 b)</th>
<th>(\frac{2a^3 d}{c})</th>
<th>(d^2)</th>
<th>(2a + b^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Tick (✓) the boxes underneath the three expressions which could represent volumes.

(Total 3 marks)

21.

\[\text{Diagram NOT accurately drawn}\]

\[\text{\(\angle ABD = 54^\circ\).} \]
\[\text{\(\angle BAC = 28^\circ\).} \]

(i) Find the size of angle \(ACD\).

\[\text{\(54^\circ\)} \]

(ii) Give a reason for your answer.

\[\text{angles in the same segment are equal}\]

(Total 2 marks)
22. There are three secondary schools in Banley. The table shows the number of students in each of these schools.

<table>
<thead>
<tr>
<th>Adis College</th>
<th>Greslow High</th>
<th>Fripp School</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>700</td>
<td>900</td>
</tr>
</tbody>
</table>

2350

Germaine takes a sample of 50 students stratified by school.

Work out the number of students from Greslow High in the sample.

\[
\frac{700}{2350} \times 50 = 14.89361702
\]

(15 students)

15

(Total 2 marks)
23. The diagram below shows a large rectangle of length \((2x + 6)\) cm and width \(x\) cm.

A smaller rectangle of length \(x\) cm and width 3 cm is cut out and removed.

The area of the shape that is left is 100 cm\(^2\).

(a) Show that \(2x^2 + 3x - 100 = 0\)

Big rectangle area \(= x(2x+6) = 2x^2 + 6x\)

Little rectangle area \(= 3x\)

\[2x^2 + 6x - 3x = 100\]
\[2x^2 + 3x = 100\]
\[2x^2 + 3x - 100 = 0\] \(\text{(3)}\)

(b) Calculate the length of the smaller rectangle.
Give your answer correct to 3 significant figures.

\[a = 2 \quad b = 3 \quad c = -100\]

\[x = \frac{-(3) \pm \sqrt{(3)^2 - 4(2)(-100)}}{2(2)}\]

\[= 6.36 \quad \text{or} \quad -7.86\]

I cannot be negative \(\therefore x = 6.36\)

\[6.36 \text{ cm} \quad \text{(4)}\]

(Total 7 marks)
24. There are 5 red pens, 3 blue pens and 2 green pens in a box.

Gary takes at random a pen from the box and gives the pen to his friend. Gary then takes at random another pen from the box.

Work out the probability that both pens are the same colour.

\[
P(\text{Red, Red}) = \frac{5}{10} \times \frac{4}{9} = \frac{20}{90}
\]

\[
P(\text{Blue, Blue}) = \frac{3}{10} \times \frac{2}{9} = \frac{6}{90}
\]

\[
P(\text{Green, Green}) = \frac{2}{10} \times \frac{1}{9} = \frac{2}{90}
\]

\[
\frac{28}{90}
\]

(Total 4 marks)
25.

Diagram NOT accurately drawn

\[AC = 8 \text{ cm.} \]
\[AB = 3 \text{ cm.} \]
\[DE = 19 \text{ cm.} \]
\[\text{Angle } ABC = \text{angle } CBD = \text{angle } BDE = 90^\circ. \]
\[\text{Angle } BDC = 50^\circ. \]

(a) Calculate the length of CD.
Give your answer correct to 3 significant figures.

\[\alpha^2 + 3^2 = c^2 \]
\[x^2 + 9 = 64 \]
\[x^2 = 55 \]
\[x = \sqrt{55} \]

\[\sin \ 50^\circ = \frac{\sqrt{55}}{y} \]
\[y = \frac{\sqrt{55}}{\sin(50^\circ)} \]
\[= 9.681159564 \]

\[\text{................. cm} \]
\[\text{................. cm} \]

(b) Calculate the length of CE.
Give your answer correct to 3 significant figures.

\[\alpha^2 = b^2 + c^2 - 2bc \cos \ A \]
\[= (9.68)^2 + (19)^2 - 2(9.68)(19) \cos(40^\circ) \]
\[= 172.909308 \]
\[\alpha = 13.14949839 \]

\[\text{................. cm} \]
\[\text{................. cm} \]

(Total 7 marks)
26. The voltage \(V \) of an electronic circuit is given by the formula

\[
V = IR
\]

where \(I \) is the current in amps and \(R \) is the resistance in ohms.

Given that \(V = 218 \) correct to 3 significant figures, \(R = 12.6 \) correct to 3 significant figures,

calculate the lower bound of \(I \).

\[
I_{\text{lower}} = \frac{V_{\text{lower}}}{R_{\text{upper}}}
\]

\[
= \frac{217.5}{12.65}
\]

\[
= 17.19367589
\]

\[
\text{Lower bound of } I = 17.2
\]

(Total 3 marks)