Instructions to Candidates
In the boxes above, write your centre number, candidate number, your surname, initials and signature.
Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
You must NOT write on the formulae page.
Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 28 questions in this question paper. The total mark for this paper is 100.
There are 28 pages in this question paper. Any blank pages are indicated.
Calculators must not be used.

Advice to Candidates
Show all stages in any calculations.
Work steadily through the paper. Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.

1380/3H
Edexcel GCSE
Mathematics (Linear) – 1380
Paper 3 (Non-Calculator)
Higher Tier
Tuesday 9 November 2010 – Morning
Time: 1 hour 45 minutes

Materials required for examination
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser.
Tracing paper may be used.

Items included with question papers
Nil

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.
©2010 Edexcel Limited.

printers Log. no. N37833A
W850/R1380/57570 6/6/6/6/6
N37833A0128

edexcel
advancing learning, changing lives
GCSE Mathematics (Linear) 1380

Formulae: Higher Tier

You must not write on this formulae page.
Anything you write on this formulae page will gain NO credit.

Volume of a prism = area of cross section × length

![Diagram of a prism](image)

Volume of sphere = \(\frac{4}{3} \pi r^3 \)
Surface area of sphere = \(4\pi r^2 \)

Volume of cone = \(\frac{1}{3} \pi r^2 h \)
Curved surface area of cone = \(\pi rl \)

In any triangle ABC

![Diagram of a triangle](image)

The Quadratic Equation
The solutions of \(ax^2 + bx + c = 0 \)
where \(a \neq 0 \), are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Sine Rule \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine Rule \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} ab \sin C \)
Answer ALL TWENTY EIGHT questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1. A box contains milk chocolates and dark chocolates only. The number of milk chocolates to the number of dark chocolates is in the ratio 2 : 1

 There are 24 milk chocolates.

 Work out the total number of chocolates.

2. (a) Simplify \(p \times p \times p \times p \)

 (1)

 (b) Simplify \(2c \times 3d \)

 (1)

(Total 2 marks)
3. Louise spins a four-sided spinner and a five-sided spinner.

The four-sided spinner is labelled 2, 4, 6, 8
The five-sided spinner is labelled 1, 3, 5, 7, 9

Louise adds the score on the four-sided spinner to the score on the five-sided spinner. She records the possible total scores in a table.

<table>
<thead>
<tr>
<th>4-sided spinner</th>
<th>+</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5-sided spinner</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Complete the table of possible total scores.

(b) Write down all the ways in which Louise can get a total score of 11
One way has been done for you.

(2, 9) ..

(b) ..

Both spinners are fair.

(c) Find the probability that Louise’s total score is less than 6

...
4. Here are the first five terms of an arithmetic sequence.

\[
\begin{array}{cccc}
2 & 6 & 10 & 14 & 18
\end{array}
\]

(a) Find, in terms of \(n \), an expression for the \(n \)th term of this sequence.

\[
.....................................
\]

(2)

(b) An expression for the \(n \)th term of another sequence is \(10 - n^2 \)

(i) Find the third term of this sequence.

\[
.....................................
\]

(ii) Find the fifth term of this sequence.

\[
.....................................
\]

(2)

Q4

(Total 4 marks)
The radius of a circle is 10 cm.

Work out the area of this circle.
Use $\pi = 3.14$

\[\text{Area} = \pi r^2 = 3.14 \times (10)^2 = 314 \text{ cm}^2 \]

Work out an estimate for \[\frac{3870}{236 \times 4.85} \]

\[\text{Estimate} = \frac{3870}{1122.6} = \frac{3870}{1122} \approx 3.43 \]

(Total 2 marks)
7. Paul drives 175 miles to a meeting.
His company pays him 37p for each mile.
Work out how much the company pays Paul.

£

Q7
(Total 3 marks)
8. On the grid draw the graph of \(x + y = 4 \) for values of \(x \) from \(-2\) to 5

(Total 3 marks)
9.

Diagram NOT accurately drawn

\[\triangle ABC \] is an equilateral triangle.
\[\overline{ACD} \] is a straight line.

(a) Work out the size of the angle marked \(x \).

\[
\begin{align*}
\angle BCD &= \angle BAC \quad \text{(Opposite angles of an equilateral triangle)} \\
\angle BCD &= 60^\circ \\
x &= 180^\circ - 60^\circ \\
x &= 120^\circ
\end{align*}
\]

................................... °

(2)

(b) Give a reason for your answer.

..
..

(1)

(Total 3 marks)
10. Chris plays golf.

Here are 15 of his scores.

69 78 82 86 77
83 91 77 92 80
74 81 83 77 72

(a) Draw an ordered stem and leaf diagram to show this information.

You must include a key.

(b) Write down the mode.

.....................................

Key:

(Total 4 marks)
11. Lizzie bought a van.
 The total cost of the van was £6000 plus VAT at $1\frac{1}{2}\%$.

 Lizzie paid £3000 when she got the van.
 She paid the rest of the total cost of the van in 10 equal monthly payments.

 Work out the amount of each monthly payment.

 £

 (Total 6 marks)
Triangle A and triangle B are drawn on the grid.

(a) Describe fully the single transformation which maps triangle A onto triangle B.

..
..

(3)

(b) Translate triangle A by the vector \(\begin{pmatrix} 3 \\ 0 \end{pmatrix} \).

Label the new triangle C.

(1) Q12

(Total 4 marks)
13. Make \(v \) the subject of the formula \(t = \frac{v}{5} + 2 \)

\[v = \ldots \]

(Q13) (Total 2 marks)

14. Diagram NOT accurately drawn

\(P \) is the point with coordinates \((2, 3)\).
\(Q \) is the point with coordinates \((12, 7)\).

Work out the coordinates of the midpoint of the line \(PQ \).

\((\ldots, \ldots)\) (Q14) (Total 2 marks)
15. Here are 5 diagrams.

Two of these diagrams show a net for a square-based pyramid.

Write down the letter of each of these two diagrams.

................................. and Q15
(Total 2 marks)
16. (a) Expand and simplify \(3(x + 5) + 2(5x - 6)\)

(b) Simplify \(\frac{2x + 4}{2}\)

(c) Factorise \(5x + 10\)

(d) Factorise fully \(x^2y + xy^2\)

(Total 6 marks)
17. Use ruler and compasses to **construct** the perpendicular bisector of the line AB.

You must show all your construction lines.
18. (a) Work out \[\frac{17}{20} - \frac{2}{5} \]

(b) Work out \[\frac{2}{3} \times \frac{3}{4} \]
19.

Diagram NOT accurately drawn

\[\begin{align*}
A & \quad B \\
C & \quad D \\
E & \quad B \\
10 \text{ cm} & \\
5 \text{ cm} & \\
8 \text{ cm} & \\
\end{align*} \]

\[\begin{align*}
ABC \text{ and } AED \text{ are straight lines.}
EB \text{ is parallel to } DC.
\text{Angle } ACD = 90^\circ.
AB = 10 \text{ cm.}
BC = 5 \text{ cm.}
EB = 8 \text{ cm.}
\end{align*} \]

(a) Work out the length of DC.

\[\begin{align*}
\text{... cm} & \\
\end{align*} \]

(2)

(b) Work out the area of the trapezium EBCD.

\[\begin{align*}
\text{... cm}^2 & \\
\end{align*} \]

(2)

(Total 4 marks)
20. Mr Green measured the height, in cm, of each tomato plant in his greenhouse. He used the results to draw the box plot shown below.

(a) Write down the median height.

.. cm

(1)

(b) Work out the interquartile range.

.. cm

(2)

(c) Explain why the interquartile range may be a better measure of spread than the range.

..

..

(1)

(Total 4 marks)
21. Solve the simultaneous equations

\[6x + 2y = -3\]
\[4x - 3y = 11\]

\[x = \ldots, \quad y = \ldots\]

(Total 4 marks)
In the diagram, O is the centre of the circle.
A and C are points on the circumference of the circle.
BCO is a straight line.
BA is a tangent to the circle.

$AB = 8$ cm.
$OA = 6$ cm.

(a) Explain why angle OAB is a right angle.

..

..

(1)

(b) Work out the length of BC.

................................cm

(3) Q22

(Total 4 marks)
23. (a) Expand and simplify \((x - 3)(x + 5)\)

(b) Solve \(x^2 + 8x - 9 = 0\)
24. Tom asked the students in his class how many hours they watched television last week. The incomplete histogram was drawn using his results.

Eight students watched television for between 10 and 15 hours.
Six students watched television for between 0 and 10 hours.

(a) Use this information to complete the histogram.

No students watched television for more than 30 hours.

(b) Work out how many students Tom asked.

.....................................

(Total 4 marks)
25. The table shows information about the ages, in years, of 1000 teenagers.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teenagers</td>
<td>158</td>
<td>180</td>
<td>165</td>
<td>141</td>
<td>131</td>
<td>115</td>
<td>110</td>
</tr>
</tbody>
</table>

Simone takes a sample of 50 of these teenagers, stratified by age.

Calculate the number of 14 year olds she should have in her sample.

26. \(P \) is inversely proportional to \(V \).

When \(V = 8 \), \(P = 5 \)

(a) Find a formula for \(P \) in terms of \(V \).

\[P = \frac{k}{V} \]

(b) Calculate the value of \(P \) when \(V = 2 \)

\[P = \frac{k}{2} \]
27.

OPT is a triangle.
M is the midpoint of OP.
\(\overrightarrow{OT} = a \)
\(\overrightarrow{TP} = b \)

(a) Express \(\overrightarrow{OM} \) in terms of \(a \) and \(b \).

\[\overrightarrow{OM} = \text{...............} \] (2)

(b) Express \(\overrightarrow{TM} \) in terms of \(a \) and \(b \).
Give your answer in its simplest form.

\[\overrightarrow{TM} = \text{...............} \] (2)
28. (a) Construct the graph of \(x^2 + y^2 = 9 \)

\[\begin{array}{c|cccc} \hline x & -3 & -2 & -1 & O \\ \hline y & -3 & -2 & -1 & 1 \\ \hline \end{array} \]

(b) By drawing the line \(x + y = 1 \) on the grid, solve the equations

\[
\begin{align*}
x^2 + y^2 &= 9 \\
x + y &= 1
\end{align*}
\]

\[x = \ldots, y = \ldots \]

or \(x = \ldots, y = \ldots \)

(Total 5 marks)