1380/3H
Edexcel GCSE
Mathematics (Linear) – 1380
Paper 3 (Non-Calculator)
Higher Tier
Thursday 5 November 2009 – Morning
Time: 1 hour 45 minutes

Materials required for examination
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser.
Tracing paper may be used.

Items included with question papers
Nil

Instructions to Candidates
In the boxes above, write your centre number, candidate number, your surname, initials and signature.
Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
You must NOT write on the formulae page.
Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 25 questions in this question paper. The total mark for this paper is 100.
There are 24 pages in this question paper. Any blank pages are indicated.
Calculators must not be used.

Advice to Candidates
Show all stages in any calculations.
Work steadily through the paper. Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.

Turn over
Volume of a prism = area of cross section × length

Volume of sphere = \(\frac{4}{3} \pi r^3 \)
Surface area of sphere = \(4\pi r^2 \)

Volume of cone = \(\frac{1}{3} \pi r^2 h \)
Curved surface area of cone = \(\pi rl \)

In any triangle ABC

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

Cosine Rule \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} ab \sin C \)

The Quadratic Equation
The solutions of \(ax^2 + bx + c = 0 \)
where \(a \neq 0 \), are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Answer ALL TWENTY FIVE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1. Using the information that

\[74 \times 234 = 17316 \]

write down the value of

(a) \[740 \times 234 \]

..............................

(1)

(b) \[74 \times 2.34 \]

..............................

(1)

(Total 2 marks)

2. Work out an estimate for the value of \(\frac{31 \times 4.92}{0.21} \)

..............................

Q2

(Total 3 marks)
3. (a) Complete the table of values for \(y = 2x + 2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) On the grid, draw the graph of \(y = 2x + 2 \)

(c) Use your graph to find

(i) the value of \(y \) when \(x = -1.5 \)

\[y = \ldots \]

(ii) the value of \(x \) when \(y = 7 \)

\[x = \ldots \]

(Total 6 marks)
4.

Triangle P has been drawn on a grid.

(a) On the grid, draw an enlargement of the triangle P with scale factor 3

(b) On the grid, rotate triangle Q 90° clockwise, centre O.

(Total 5 marks)
5. Here are the weights in grams, to the nearest gram, of 15 eggs.

33 46 41 54 51
38 60 44 55 51
62 55 52 37 63

(a) Complete the ordered stem and leaf diagram to show this information. You must include a key.

Key

(b) Work out the probability that this egg will have a weight of more than 45 grams.
6. 30 students took a test. The table shows information about how long it took them to complete the test.

<table>
<thead>
<tr>
<th>Time (t minutes)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < t \leq 10$</td>
<td>5</td>
</tr>
<tr>
<td>$10 < t \leq 20$</td>
<td>7</td>
</tr>
<tr>
<td>$20 < t \leq 30$</td>
<td>8</td>
</tr>
<tr>
<td>$30 < t \leq 40$</td>
<td>6</td>
</tr>
<tr>
<td>$40 < t \leq 50$</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) On the grid, draw a frequency polygon for this information.

(b) Write down the modal class interval.

Q6
(Total 3 marks)
7. (a) Work out \(\frac{3}{8} + \frac{1}{4} \)

Give your answer in its simplest form.

\[\frac{\text{Answer}}{(2)} \]

(b) Work out \(\frac{2}{3} \times \frac{4}{5} \)

\[\frac{\text{Answer}}{(2)} \]

(c) Work out \(423 \times 12 \)

You must show all your working.

\[\frac{\text{Answer}}{(3)} \]

(Total 7 marks)
8. Simon wants to find out how much people spend using their mobile phone. He uses this question on a questionnaire.

![Question Box]

(a) Write down two things that are wrong with this question.

1 ..

..

2 ..

..

(2)

(b) Design a better question for his questionnaire to find out how much people spend using their mobile phone. You should include some response boxes.

(Question Box)

(Total 4 marks)
9. (a) A solid cube has sides of length 5 cm.

Work out the total surface area of the cube.
State the units of your answer.

...

(4)

The volume of the cube is 125 cm3.

(b) Change 125 cm3 into mm3.

............................ mm3

(2)

The weight of the cube is 87 grams, correct to the nearest gram.

(c) (i) What is the minimum the weight could be?

............................ grams

(ii) What is the maximum the weight could be?

............................ grams

(2)

(Total 8 marks)
10. (a) Simplify \(3a + 4c - a + 3c\)

(b) Expand \(y(2y - 3)\)

(c) Factorise \(x^2 - 4x\)

(d) Expand and simplify \(2(x + 3) + 3(2x - 1)\)

(e) Solve \(3(x + 2) = 8\)

\[x = \ldots\]

(Total 9 marks)
11. The diagram shows the positions of two telephone masts, A and B, on a map.

(a) Measure the bearing of B from A.

.. °

(1)

Another mast C is on a bearing of $160°$ from B.
On the map, C is 4 cm from B.

(b) Mark the position of C with a cross (×) and label it C.

(2) Q11

(Total 3 marks)
12. Batteries are sold in packets and boxes.
 Each packet contains 4 batteries.
 Each box contains 20 batteries.

 Bill buys \(p \) packets of batteries
 and \(b \) boxes of batteries.
 Bill buys a total of \(N \) batteries.

 Write down a formula for \(N \) in terms of \(p \) and \(b \).

\[\text{Formula for } N \]

13. (a) Write in standard form \(213000 \)

\[\text{Standard form for } 213000 \]

(b) Write in standard form \(0.00123 \)

\[\text{Standard form for } 0.00123 \]

14. (a) Write down the value of \(5^0 \)

\[\text{Value of } 5^0 \]

(b) Write down the value of \(2^{-1} \)

\[\text{Value of } 2^{-1} \]
15. k is an integer such that $-1 \leq k < 3$

(a) List all the possible values of k.

...

(2)

(b) Solve the inequality $6y \geq y + 10$

...

(2)

16. Make q the subject of the formula $5(q + p) = 4 + 8p$

Give your answer in its simplest form.

$q = ...$

(Q16)

(Total 3 marks)
17. The box plots show the distribution of marks in an English test and in a Maths test for a group of students.

(a) What is the highest mark in the English test?

..

(1)

(b) Compare the distributions of the marks in the English test and marks in the Maths test.

1

..

2

..

(2) Q17

(Total 3 marks)
B, D and E are points on a circle centre O.
ABC is a tangent to the circle.
BE is a diameter of the circle.
Angle DBE = 35°.

(a) Find the size of angle ABD.
Give a reason for your answer.

............................ °
(2)

(b) Find the size of angle DEB.
Give a reason for your answer.

............................ °
(2)

(Total 4 marks)
19. Emma has 7 pens in a box.
 5 of the pens are blue.
 2 of the pens are red.

 Emma takes at random a pen from the box and writes down its colour.
 Emma puts the pen back in the box.

 Then Emma takes at random a second pen from the box, and writes down its colour.

 (a) Complete the probability tree diagram.

 First pen Second pen
 Blue

 Blue Red
 Blue
 Red

 (b) Work out the probability that Emma takes exactly one pen of each colour from the box.

 ..

 (Total 5 marks)
20. Solve the simultaneous equations

\[4x + y = -1 \]
\[4x - 3y = 7 \]

\[x = \quad y = \]

Q20
(Total 3 marks)

21. Work out \((2 + \sqrt{3})(2 - \sqrt{3})\)

Give your answer in its simplest form.

\[......................... \]

Q21
(Total 2 marks)
22.

\[OAB \text{ is a triangle.} \]
\[\overrightarrow{OA} = a, \quad \overrightarrow{OB} = b \]

(a) Find the vector \(\overrightarrow{AB} \) in terms of \(a \) and \(b \).

\[\overrightarrow{AB} = \text{............................} \]

(b) Find the vector \(\overrightarrow{OP} \) in terms of \(a \) and \(b \).

Give your answer in its simplest form.

\[\overrightarrow{OP} = \text{............................} \]

\(P \) is the point on \(AB \) so that \(AP : PB = 2 : 1 \)

(Total 4 marks)
23. Prove that the recurring decimal \(0.36 = \frac{4}{11}\)

24. This is a sketch of the curve with the equation \(y = f(x)\).
 The only minimum point of the curve is at \(P(3, -4)\).

 (a) Write down the coordinates of the minimum point of the curve with the equation
 \(y = f(x - 2)\)

 (\(..........., \\)) \(\quad (2)\)

 (b) Write down the coordinates of the minimum point of the curve with the equation
 \(y = f(x + 5) + 6\)

 (\(..........., \\)) \(\quad (2)\)

 (Total 4 marks)
25. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.