Mathematics A
Paper 2 (Calculator)

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided – there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over
GCSE Mathematics 1MA0

Formulae: Higher Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Volume of prism = area of cross section \(\times\) length

![Diagram of a prism](image)

Volume of sphere = \(\frac{4}{3}\pi r^3\)

Surface area of sphere = \(4\pi r^2\)

![Diagram of a sphere](image)

In any triangle \(ABC\)

Sine Rule \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\)

Cosine Rule \(a^2 = b^2 + c^2 - 2bc \cos A\)

Area of triangle = \(\frac{1}{2} ab \sin C\)

Area of trapezium = \(\frac{1}{2} (a + b)h\)

![Diagram of a trapezium](image)

Volume of cone = \(\frac{1}{3}\pi r^2h\)

Curved surface area of cone = \(\pi rl\)

![Diagram of a cone](image)

The Quadratic Equation

The solutions of \(ax^2 + bx + c = 0\) where \(a \neq 0\), are given by

\[
x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}
\]
1 The point A has coordinates $(2, 3)$.
The point B has coordinates $(6, 8)$.

M is the midpoint of the line AB.

Find the coordinates of M.

\[(\text{Total for Question 1 is 2 marks}) \]
The table shows the average temperature on each of seven days and the number of units of gas used to heat a house on these days.

<table>
<thead>
<tr>
<th>Average temperature (°C)</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of gas used</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

(a) Complete the scatter graph to show the information in the table. The first 5 points have been plotted for you.

(b) Describe the relationship between the average temperature and the number of units of gas used.
(c) Estimate the average temperature on a day when 12 units of gas are used.

.. °C

(2)

(Total for Question 2 is 4 marks)

3 \(x = 0.7 \)

Work out the value of \(\frac{(x + 1)^2}{2x} \)

Write down all the figures on your calculator display.

..

(Total for Question 3 is 2 marks)
Here is a circle.

The diameter of the circle is 9 cm.

Work out the circumference of this circle.
Give your answer correct to 3 significant figures.

.. cm

(Total for Question 4 is 2 marks)
Describe the single transformation that maps triangle \(A \) onto triangle \(B \).

(Total for Question 5 is 2 marks)
Sue is driving home from her friend’s house.

Sue drives

10 miles from her friend’s house to the motorway
240 miles on the motorway
5 miles from the motorway to her home

Sue stops for a 30 minute rest on her drive home.

Sue leaves her friend’s house at 9.00 am.

What time does Sue get home?
You must show all your working.

(Total for Question 6 is 3 marks)
PRS and TWY are parallel straight lines.
QRWZ is a straight line.

Work out the value of x.
Give reasons for your answer.
8 Lorna carries out a survey about the number of times customers go to a shop.
She asks at random 100 customers how many times they went to the shop last month.
The table shows Lorna’s results.

<table>
<thead>
<tr>
<th>Number of times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>more than 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>4</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>25</td>
<td>13</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

One of the 100 customers is chosen at random.

(a) What is the probability that this customer went to the shop 5 or more times?

...

(2)

Last month the shop had a total of 1500 customers.

(b) Work out an estimate for the number of customers who went to the shop exactly 2 times last month.

...

(2)

The owner of a different shop is carrying out a survey on the ages of his customers.
He records the ages of the first 10 customers in his shop after 9 am one morning.

(c) This may **not** be a suitable sample.
 Give **two** reasons why.

1 ..
...

2 ..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(Total for Question 8 is 6 marks)
9 The diagram shows a trapezium.

\[AD = x \text{ cm.} \]
\[BC \text{ is the same length as } AD. \]
\[AB \text{ is twice the length of } AD. \]
\[DC \text{ is } 4 \text{ cm longer than } AB. \]

The perimeter of the trapezium is 38 cm.

Work out the length of \(AD \).

\[\frac{}{} \text{ cm} \]

(Total for Question 9 is 4 marks)
10 (a) Simplify \((p^3)^2\)

(b) Simplify \(\frac{t^8}{t^3}\)

\[2^3 \times 2^n = 2^9\]

(c) Work out the value of \(n\).

\[2x^3 = 128\]

(d) Work out the value of \(x\).

(Total for Question 10 is 4 marks)
Here is a plan of Martin’s driveway.

Martin is going to cover his driveway with gravel. The gravel will be 6 cm deep.

Gravel is sold in bags. There are 0.4 m³ of gravel in each bag. Each bag of gravel costs £38.

Martin gets a discount of 30% off the cost of the gravel.

Work out the total amount of money Martin pays for the gravel.

£ ..

(Total for Question 11 is 5 marks)
Here are the first five terms of an arithmetic sequence.

\[
4 \quad 9 \quad 14 \quad 19 \quad 24
\]

(a) Find, in terms of \(n \), an expression for the \(n \)th term of this sequence.

\[
\text{Expression: } a_n = \ldots
\]

(2)

Here are the first five terms of a different sequence.

\[
2 \quad 2 \quad 0 \quad -4 \quad -10
\]

An expression for the \(n \)th term of this sequence is \(3n - n^2 \)

(b) Write down, in terms of \(n \), an expression for the \(n \)th term of a sequence whose first five terms are

\[
4 \quad 4 \quad 0 \quad -8 \quad -20
\]

(1)

(Total for Question 12 is 3 marks)
13 $-5 \leq y \leq 0$

y is an integer.

(a) Write down all the possible values of y.

..

..

(2)

(b) Solve $6(x - 2) > 15$

..

..

(2)

(Total for Question 13 is 4 marks)
Ali is planning a party.

He wants to buy some cakes and some sausage rolls.

The cakes are sold in boxes.
There are 12 cakes in each box.
Each box of cakes costs £2.50

The sausage rolls are sold in packs.
There are 8 sausage rolls in each pack.
Each pack of sausage rolls costs £1.20

Ali wants to buy more than 60 cakes and more than 60 sausage rolls.
He wants to buy exactly the same number of cakes as sausage rolls.

What is the least amount of money Ali will have to pay?

£..

(Total for Question 14 is 5 marks)
15 The diagram shows the positions of three turbines A, B and C.

A is 6 km due north of turbine B.
C is 4.5 km due west of turbine B.

(a) Calculate the distance AC.

.. km

(3)

(b) Calculate the bearing of C from A.
Give your answer correct to the nearest degree.

...°

(4)

(Total for Question 15 is 7 marks)
16 Work out the value of $(7.5 \times 10^4) \times (2.5 \times 10^3)$
Give your answer in standard form.

(Total for Question 16 is 2 marks)
Quadrilaterals $ABCD$ and $LMNP$ are mathematically similar.

Angle $A = angle L$
Angle $B = angle M$
Angle $C = angle N$
Angle $D = angle P$

(a) Work out the length of LP.

.. cm
(2)

(b) Work out the length of BC.

.. cm
(2)

(Total for Question 17 is 4 marks)
Katie invests £200 in a savings account for 2 years. The account pays compound interest at an annual rate of 3.3% for the first year and 1.5% for the second year.

(a) Work out the total amount of money in Katie’s account at the end of 2 years.

£..

(3)

Katie travels to work by train. The cost of her weekly train ticket increases by 12.5% to £225. Katie’s weekly pay increases by 5% to £535.50.

(b) Compare the increase in the amount of money Katie has to pay for her weekly train ticket with the increase in her weekly pay.

(3)

(Total for Question 18 is 6 marks)
19 Here is a cuboid drawn on a 3-D grid.

\[P \text{ is a vertex of the cuboid.} \]

\[T \text{ divides the line } OP \text{ in the ratio } 1:2 \]

Find the coordinates of \(T \).

\[(\ldots, \ldots, \ldots)\]

(Total for Question 19 is 2 marks)
20 25 students in class A did a science exam.
30 students in class B did the same science exam.

The mean mark for the 25 students in class A is 67.8
The mean mark for all the 55 students is 72.0

Work out the mean mark for the students in class B.

(Total for Question 20 is 3 marks)
21 (a) Expand and simplify \((y - 2)(y - 5)\)

*(b) Prove algebraically that

\[(2n + 1)^2 - (2n + 1)\] is an even number

for all positive integer values of \(n\).
22 Shabeeen has a biased coin.
 The probability that the coin will land on heads is 0.6

Shabeeen is going to throw the coin 3 times.

She says the probability that the coin will land on tails 3 times is less than 0.1

Is Shabeeen correct?
You must show all your working.

(Total for Question 22 is 3 marks)
23 (a) Explain what is meant by a stratified sample.

The table shows information about the ages of the people living in a village.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 21</td>
<td>72</td>
</tr>
<tr>
<td>21–40</td>
<td>90</td>
</tr>
<tr>
<td>41–60</td>
<td>123</td>
</tr>
<tr>
<td>Over 60</td>
<td>314</td>
</tr>
</tbody>
</table>

Mrs Parrish carries out a survey of these people. She uses a sample size of 50 people stratified by age group.

(b) Work out the number of people over 60 years of age in the sample.

(Total for Question 23 is 3 marks)
p is inversely proportional to t.

When $t = 4$, $p = 12$

Find the value of p when $t = 6$

(Total for Question 24 is 3 marks)
The diagram shows a solid made from a hemisphere and a cone.

The radius of the hemisphere is 4 cm.
The radius of the base of the cone is 4 cm.

Calculate the volume of the solid.
Give your answer correct to 3 significant figures.

\[\text{Volume} = \text{Volume of hemisphere} + \text{Volume of cone} \]

\[\text{Volume of hemisphere} = \frac{2}{3} \pi r^3 \]

\[\text{Volume of cone} = \frac{1}{3} \pi r^2 h \]

\[\text{Volume} = \frac{2}{3} \pi (4)^3 + \frac{1}{3} \pi (4)^2 (14) \]

\[\text{Volume} = \frac{2}{3} \pi 64 + \frac{1}{3} \pi 4 \times 14 \]

\[\text{Volume} =
\]

\[\frac{128}{3} \pi + \frac{56}{3} \pi \]

\[\frac{184}{3} \pi \]

\[\approx 192.56 \text{ cm}^3 \]

(Total for Question 25 is 3 marks)
Solve the equations

\[x^2 + y^2 = 36 \]
\[x = 2y + 6 \]

(Total for Question 26 is 5 marks)
27 \(ABCD\) is a parallelogram.

\[AC = 9\, \text{cm}\]
\[DC = 11\, \text{cm}\]
\[\text{Angle } DAC = 100^\circ\]

Calculate the area of the parallelogram.
Give your answer correct to 3 significant figures.

\[\text{.. cm}^2\]

(Total for Question 27 is 5 marks)