Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG033849
All the material in this publication is copyright
© Pearson Education Ltd 2012
NOTES ON MARKING PRINCIPLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

 i) **ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear**
 Comprehension and meaning is clear by using correct notation and labeling conventions.

 ii) **select and use a form and style of writing appropriate to purpose and to complex subject matter**
 Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.

 iii) **organise information clearly and coherently, using specialist vocabulary when appropriate.**
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.
7 **With working**
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.
Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 **Follow through marks**
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 **Ignoring subsequent work**
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.
10 Probability
Probability answers must be given as fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths). Incorrect notation should lose the accuracy marks, but be awarded any implied method marks. If a probability answer is given on the answer line using both incorrect and correct notation, award the marks. If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
13 Range of answers
Unless otherwise stated, when an answer is given as a range (e.g. 3.5 – 4.2) then this is inclusive of the end points (e.g. 3.5, 4.2) and includes all numbers within the range (e.g. 4, 4.1)

<table>
<thead>
<tr>
<th>Guidance on the use of codes within this mark scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 – method mark</td>
</tr>
<tr>
<td>A1 – accuracy mark</td>
</tr>
<tr>
<td>B1 – Working mark</td>
</tr>
<tr>
<td>C1 – communication mark</td>
</tr>
<tr>
<td>QWC – quality of written communication</td>
</tr>
<tr>
<td>oe – or equivalent</td>
</tr>
<tr>
<td>cao – correct answer only</td>
</tr>
<tr>
<td>ft – follow through</td>
</tr>
<tr>
<td>sc – special case</td>
</tr>
<tr>
<td>dep – dependent (on a previous mark or conclusion)</td>
</tr>
<tr>
<td>indep – independent</td>
</tr>
<tr>
<td>isw – ignore subsequent working</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3*</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
</tbody>
</table>
| 5 | | 600 | 3 | (M2 for $300 \div 0.5$ or 60×10 or 30×20)
M1 for at least two of 30, 10 and 0.5 or sight of 300 or 60 or 20
A1 for $600 - 620$ but not $601.1(198428…)$
OR
(M2 for $310 \div 0.5$ or 62×10 or 31×20)
M1 for at least two of 31, 10 and 0.5 or sight of 310 or 62 or 20
A1 for $600 - 620$ but not $601.1(198428…)$ |
| 6 | Enlargement, scale factor 2.5, centre $(0,0)$ | | 3 | B1 for enlargement
B1 for scale factor 2.5 oe
B1 for $(0,0)$; accept origin or O
NB: if two different transformations are stated then 0 marks. |
| 7 | $\frac{9}{2} \times (12+18) = 135$
$135 \div 20 = 6.75$ (=7 bags)
7×4.99
OR
$18 \times 9 - \frac{1}{2} (6 \times 9) = 135$
$135 \div 20 = 6.75$ (=7 bags)
7×4.99 | 34.93 | 4 | M1 for $\frac{9}{2} \times (12+18)$ or $18 \times 9 - \frac{1}{2} (6 \times 9)$
or $9 \times 12 + \frac{1}{2} (18 - 12) \times 9$ or 135 seen
M1 (dep) for ‘135’÷ 20 or 6 or 7 seen
M1 (dep on previous M1) for ‘6’ \times 4.99 or ‘7’ \times 4.99
A1 cao
[SC: M1 for $(12 \times 9 + 6 \times 9) ÷ 20$ (= $162 ÷ 20$) or 8 or 9 seen
M1 (dep) for ‘8’ \times 4.99 or ‘9’ \times 4.99
OR M1 for $(18 \times 9 - 6 \times 9) ÷ 20$ (= $108 ÷ 20$) or 5 or 6 seen
M1 (dep) for ‘5’ \times 4.99 or ‘6’ \times 4.99] |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (a)</td>
<td></td>
<td>0.15</td>
<td>2</td>
<td>M1 for 1 – (0.2 + 0.5) oe or sight of 0.3 A1 oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>2</td>
<td>M1 for 240 × 0.2 oe or 48 + 120 + 36 + 36 A1 cao</td>
</tr>
<tr>
<td>8 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>380</td>
<td>3</td>
<td>M1 for 4×7 + 5×2 (=38) or 9×2 + 5×4 (=38) or 4×7×10 or (7×9 − 5×5) or 5×2×10 (=100) or 9×2×10 (=180) or 5×4×10 (=200) or 9×7×10 (=630) or 5×5×10 (=250) M1 (dep) for ‘38’×10 or 380 or 4×7×10 + 5×2×10 or 9×2×10 + 5×4×10 or ×10 A1 cao</td>
</tr>
<tr>
<td>10</td>
<td>Region shaded</td>
<td></td>
<td>3</td>
<td>B1 for circle arc of radius 3cm (± 2mm) centre Burford B1 for circle arc of radius 5 cm (± 2mm) centre Hightown B1 for overlapping regions of circle arcs shaded</td>
</tr>
<tr>
<td>11 (a)</td>
<td></td>
<td>12x + 20</td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5x + 7</td>
<td>2</td>
<td>M1 for 2×x – 2×4 or 3×x + 3×5 A1 cao</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x² + 10x + 24</td>
<td>2</td>
<td>B2 cao (B1 for 4 correct terms with or without signs, or 3 out of no more than 4 terms, with correct signs. The terms may be in an expression or in a table)</td>
</tr>
<tr>
<td>11 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 12 | | $36 - 9\pi$ | 3 | M1 for $\pi \times 6 \times 6$ or 36π seen value 113.03-113.2
M1 for $(12 \times 12 - \pi \times 6 \times 6) \div 4$ or value 7.7-7.8
A1 for $36 - 9\pi$ oe
OR
M1 for $\pi \times 6 \times 6 \div 4$ or 9π seen or value 28.2-28.3
M1 for $6 \times 6 - \pi \times 6 \times 6 \div 4$ or value 7.7-7.8
A1 for $36 - 9\pi$ oe
NB: for M marks π may be given numerically. |
| 13* | $180 \div 9 \times 1:180 \div 9 \times 3:180 \div 9 \times 5$
=20:60:100
Not enough cement (but enough sand and enough gravel)
OR
$1 \times 15:3 \times 15:5 \times 15$
=15:45:75
$15+45+75=135 (<180)$
Not enough cement (to make 180kg of concrete) | No + reason | 4 | M1 for $180 \div (1+3+5)$ (= 20) or 3 multiples of 1:3:5
M1 for $1 \times "20"$ or $3 \times "20"$ or $5 \times "20"$ or 20 seen or 60 seen or 100 seen
A1 for (Cement =) 20, (Sand =) 60, (Gravel) = 100
C1 ft (provided both Ms awarded) for not enough cement oe
OR
M1 for $(1 \times 15$ and) 3×15 and 5×15 or 9×15 or sight of the numbers 15, 45, 75 together.
M1 for ‘15’ + ‘45’ + ‘75’
A1 for 135 (<180)
C1 ft (provided both Ms awarded) for not enough cement oe |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 14 | | 230 | 2 | M1 for 180 + 50
A1 cao
OR
M1 for 360 – (180 – 50) or 360 – 130
A1 cao
OR
M1 for 50 + (90 – 50) + 90 + 50 or 50 + 40 + 90 + 50
A1 cao
OR
M1 for a suitable diagram (sketch) with bearing of lighthouse
from ship indicated and 50° marked at lighthouse; diagram
only intended to indicate position of 50°; ignore other labels and
markings unless they create ambiguity.
A1 cao |
| 15 | (a) | m^2 | 1 | B1 for m^2 or $m^{5/3}$
(b) | $5x^3y^4$ | 2 | M1 for $x^{4+2}y^8$ or x^by^{3+1}
A1 cao |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 16 | | 84 | 4 | M1 for $x - 1 + 3x + 1 + 3x (= 56)$ or $7x = 56 + 1 - 1$ or $\frac{3x(x - 1)}{2}$ oe
M1 for $7x = 56$ or 8 seen
M1 for $0.5 \times (8 - 1) \times (3 \times 8')$
A1 cao Ignore any statement of units.
SC B2 for 8 as the answer or 7 identified as the height and 24 identified as the base of the triangle. |
| 17 | | (4,3), (4,4), (4,5), (5,4) marked | 3 | M2 for identifying the correct region or at least 3 correct points with no more than 3 incorrect points
(M1 for drawing $x = 3$ (solid or dashed line) or at least 1 correct point with no more than 3 incorrect points)
A1 cao |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 18 | | 12 | 4 | B1 for 60 seen
M1 for \((360 - 60) \div 2 = 150\)
M1 for \(360 \div (180 - 150)\) or \(150 \times n = 180(n-2)\) oe
A1 cao
OR
B1 for 60 seen
M1 for 60 \(\div 2 = 30\)
M1 for \(360 \div (60\div2)\)
A1 cao
OR
M2 for 30 seen
M1 for \(360 \div 30\)
A1 cao |
| 19 (a) | | | | B2 cao
(B1 for ends of whiskers at 18 and 44 (as part of a box plot diagram) OR for ends of box at 25 and 33 with median at 29) |
| | | | 2 | |
| 19 (b) | | Box plot 2 comparisons | 2 | B2 cao
(B1 ft for two comparisons with at least one referring to IQR or median values
(B1 ft for one comparison of IQRs, medians, or other values)
As well as median or interquartile range accept other valid references to spread if explained correctly within a statistical context. Statements need to be true. |
<p>| | | | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.38×10^{-1}, 3800×10^{-4}, 0.038×10^2, 380</td>
<td>Correct order</td>
<td>2</td>
<td>M1 changing any one correctly or at least 3 in the correct order (ignoring one) or reverse order A1 for correct order (accept any form)</td>
</tr>
<tr>
<td>21</td>
<td>(a)</td>
<td>11, 34, 65, 92, 100</td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>cf graph</td>
<td>2</td>
<td>B1 for 5 or 6 points plotted correctly ±1 full 2 mm square at the upper end of the interval dep on sensible table (condone one error in addition) B1 (dep) for points joined by curve or line segments provided no gradient is negative. Ignore any point or graph outside range of their points. SC B1 for 5 or 6 points plotted not at end but consistently within each interval and joined.</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>18 – 24</td>
<td>2</td>
<td>M1 for indication of taking a reading from 90 or ft from their cf graph A1 for 18 – 24</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 22 | $12x + 8y = 16$
 | $12x + 15y = 51$
 | $7y = 35$
 | $3x + 2 \times 5 = 6$
 | $x = -2$
 | $y = 5$
 | 4 | M1 for a correct process to eliminate either x or y or leading to substitution (condone one arithmetic error)
 | A1 for either $x = -2$ or $y = 5$
 | M1 (dep) for correct substitution of their found value
 | A1 cao
 | SC If M0 scored B1 for $y = -2$ and $x = 5$ |
| | Alternative method
 | $x = \frac{4 - 2y}{3}$
 | $4 \left(\frac{4 - 2y}{3} \right) + 5y = 17$
 | $16 - 8y + 15y = 51$
 | $7y = 35$
 | $x = \frac{4 - 2 \times 5}{3}$
<p>| | |
| | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 23 | | 7.5 | 4 | B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram
M1 for \(0 = \frac{-1}{2} \times 3 + c\)
M1 (dep on previous M1) for 6 + ‘1.5’
A1 cao
OR
B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram
M1 for \(3/6 = OP/3\) or 1.5 oe seen (from similar triangles)
M1 for 6 + ‘1.5’
A1 cao
OR
B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram
M1 for \((6+OP)^2 = (6^2+3^2) + (3^2+OP^2)\) oe (from Pythagoras)
M1 for 6 + ‘1.5’
A1 cao |
| 24 | \(t = \frac{3-4p}{p+2}\) | | 4 | M1 for intention to multiply both sides by 4+t
eg \(p \times 4+t = 3-2t\)
M1 for intention to correctly move their \(t\) terms to one side, and correctly move their other terms to the other side
eg \(p \times 4+t - 4p+2t = 3-2t+2t-4p\)
M1 for intention to factorise \(eg\ (p \pm 2)\)
A1 for \(t = \frac{3-4p}{p+2}\) oe |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (a)</td>
<td>M1 for (80 \times \left(\frac{8}{4}\right)^3) or (80 \div \left(\frac{4}{8}\right)^3)</td>
<td>640</td>
<td>2</td>
<td>A1 cao</td>
</tr>
<tr>
<td>25 (b)</td>
<td>M1 for (160 \div \left(\frac{8}{4}\right)^2) or (160 \times \left(\frac{4}{8}\right)^2) or ft their scale factor from (a)</td>
<td>40</td>
<td>2</td>
<td>A1 cao</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 26 (a) | | \(\frac{5\sqrt{2}}{2} \) | 2 | M1 for \(\frac{5 \times \sqrt{2}}{\sqrt{2}} \) oe
A1 for \(\frac{5\sqrt{2}}{2} \) oe |
| | | | | **OR** |
| | | | | Difference of two squares
M1 for \((2 + \sqrt{3}) - (2 - \sqrt{3}) \left((2 + \sqrt{3}) + (2 - \sqrt{3}) \right) \)
A1 cao |
| (b) | | &nolimits{8\sqrt{3}} | 2 | M1 for \(2 \times 2 + 2\sqrt{3} + 2\sqrt{3} + \sqrt{3} \times \sqrt{3} \)
or \(4 + 4\sqrt{3} + 3 \) \((4 + 4\sqrt{3} + 3)\)
or \(2 \times 2 - 2\sqrt{3} - 2\sqrt{3} + \sqrt{3} \times \sqrt{3} \)
at least three terms in either correct; could be in a grid.
A1 cao |
| 27 (a) | | Circle, centre \(O \), radius 2 | 2 | B2 cao
(B1 for a circle radius 2 any centre or for a circle or part of a circle centre (0, 0) any radius) |
| | | Cosine curve crossing at (0, 1), (90, 0), (270, 0) and (360, 1) | | B2 cao (ignore if sketch outside region)
(B1 for a curve with correct intercepts but incorrect amplitude OR for a curve starting at (0,1) with correct amplitude but incorrect intercepts; curves must have a shape that approximates to a cosine curve) |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>(a)</td>
<td>$a - 3b$</td>
<td>1</td>
<td>B1 for $a - 3b$ oe</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td></td>
<td>4</td>
<td>M1 for $(NC =) 2a - 2b$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1 for $(NM =) b + \frac{1}{2}(a - 3b)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for $\frac{1}{2}(a - b)$ oe and $2a - 2b$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1 for NC is a multiple of NM (+ common point)</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td>M1 for $(NC =) 2a - 2b$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1 for $(MC =) \frac{1}{2}(a - 3b) + a$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for $\frac{3}{2}(a - b)$ oe and $2a - 2b$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1 for NC is a multiple of MC (+ common point)</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td>M1 for $(NM =) b + \frac{1}{2}(a - 3b)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1 for $(MC =) \frac{1}{2}(a - 3b) + a$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for $\frac{1}{2}(a - b)$ oe and $\frac{3}{2}(a - b)$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1 for NM is a multiple to MC (+ common point)</td>
</tr>
</tbody>
</table>