1	$y = 2x^3 + 5x^2 - 7x + 10$	
	Find $\int y dx$	(Total for question 1 is 4 marks)
2	Find $\int (3x^2 + 7x - 2) dx$	
		(Total for question 2 is 4 marks)
3	Find $\int (x+4)(x-3) dx$	
		(Total for question 3 is 4 marks)
4	$f'(x) = 6x^2 - 3x + 8$	
	Given that the point $(1, 8)$ lies on $y = f(x)$	
	Find an expression for $f(x)$	(Total for question 4 is 5 marks)
5	$y = 4\sqrt{x} + \frac{1}{x^2} + 10$	
	Find $\int y dx$	(Total for question 5 is 4 marks)
6	Find $\int_{1}^{3} (x+4)(x-3) dx$	
		(Total for question 6 is 5 marks)
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^4 - 5$	
	Given that the point $(2, 30)$ lies on the curve	
	Find an expression for y in terms of x	(Total for question 7 is 5 marks)
8	Find $\int_{1}^{4} 5 + \frac{1}{\sqrt{x}} dx$	
		(Total for question 8 is 5 marks)
9	The curve with the equation $f(x)$ passes through the point $(1, 2)$	
	Given that $f'(x) = 5 + \frac{3x^2 + 2}{x^{\frac{1}{2}}}$	
	Find $f(x)$ giving your answer in its simplest form.	
		(Total for question 9 is 7 marks)

26	Given that k is a positive constant and $\int_{-\infty}^{k} \left(\frac{3}{2\sqrt{x}} + 9\right) dx = 8$	
	(a) Show that $9k + 3\sqrt{k} - 20 = 0$	(4)
	(b) Hence, using algebra, find any values of k such that $\int_{1}^{k} \left(\frac{3}{2\sqrt{x}} + 9\right) dx = 8$	(4)
	(Total for question 26 is a	8 marks)
27	$f(x) = 2x^3 - x^2 - 8x + 4$	
	(a) Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$	(2)
	(b) Hence, showing all your working, write $f(x)$ as a product of three linear factors.	(4)
	The finite region <i>R</i> is bounded by the curve with equation $y = f(x)$ and the <i>x</i> -axis, and lies below the x-axis	
	(c) Find, using algebraic integration, the exact value of the area of R	(4)
	(Total for question 27 is 1	10 marks)
28	Find $\int \left(\frac{4x^3-5}{3x^2}\right) dx$	
	writing your answer in its simplest form.	
	(Total for question 28 is 4	4 marks)
29	Find the value of k such that $\int_{1}^{8} \left(\frac{k}{\sqrt[3]{x}}\right) dx = 22.5$	
	(Total for question 29 is 4	4 marks)
30	Find the value of k such that $\int_{k}^{9} \left(\frac{10}{\sqrt{x}}\right) dx = 20$	
	(Total for question 30 is 4	4 marks)
31	(a) Find $\int (2x - x^2) dx$	
	(b) Evaluate $\int_{0}^{4} (2x - x^{2}) dx$	
	(c) Using a sketch, explain why the integral in part (b) does not give the area enclosed betw the curve $y = 2x - x^2$ and the <i>x</i> -axis	/een
	(Total for question 31 is 5	5 marks)

36 Show that
$$\int_{1}^{8} \left(\frac{16}{x^2}\right) dx = 14$$

(Total for question 36 is 4 marks)
37 Show that $\int_{1}^{4} (1 + 3\sqrt{x}) dx = 17$
(Total for question 37 is 4 marks)
38 (a) Find $\int x^2 \left(2x + \frac{25}{\sqrt{x}}\right) dx$ (5)
(b) Find $\int_{1}^{9} x^2 \left(2x + \frac{25}{\sqrt{x}}\right) dx$ (3)
(Total for question 38 is 8 marks)
39 Use integration to show that the area enclosed by x-axis and the curve with equation
 $y = (x + 3)(x - 1)^2$ is $\frac{64}{3}$ square units.
(Total for question 39 is 6 marks)