AS Level Maths: Differentiation

	AS LEVEL HULLIS: DITICLE	
1	$y = 2x^3 + 5x^2 - 7x + 10$	
	(a) Find $\frac{dy}{dx}$	(2)
	(b) Find the gradient of the curve when $x = 2$	(1)
		(Total for question 1 is 3 marks)
2	$y = 3x + \frac{1}{x}$	
	(a) Find $\frac{dy}{dy}$	(2)
	$\frac{dx}{dx}$	()
	(b) Find the x coordinates of points where the gradient is zero.	
	2	(Total for question 2 is 4 marks)
3	$f(x) = 3x^{\frac{5}{2}} + \frac{3}{x^2} - 6x$	
	Find $f'(x)$	
		(Total for question 3 is 4 marks)
4	$y = 4\sqrt{x} + \frac{1}{2x} + 10$	
	(a) Find $\frac{dy}{dx}$	(3)
	(b) Find d^2y	(2)
	$\frac{dx^2}{dx^2}$	(Total for question 4 is 5 marks)
	$2 m^2 - 5 m + 2$	(
5	$y = \frac{2x - 5x + 5}{x}$	
	(a) Find dy	(3)
	(a) Find $\frac{dx}{dx}$	(3)
	(b) Find the gradient when $x = 3$	(1)
		(lotal for question 5 is 4 marks)
6	$y = x^3 - 4x^2 - 3x + 9$	
	(a) Find $\frac{dy}{dx}$	(2)
	(b) Find the range values of x for which y is increasing	(3)
		(Total for question 6 is 5 marks)
7	A curve has the equation $y = 2r^3 + 0r^2 - 24r + 12$	· · · · · · · · · · · · · · · · · · ·
1	Find the coordinates of the curve's local maximum.	
		(Total for question 7 is 6 marks)

 (a) Find dy/dx (b) Find the exact range of values of x for which the curve is increasing. (Total for question 8 is 5 mar A curve has the equation y = 2x³ - 12x² + 18x + 5 (a) The curve has a local minimum at P, find the coordinates of P. (b) Justify that P is a minimum point. (Total for question 9 is 6 mar 	(3) (2) <u>ks)</u> (4) (2) <u>ks)</u>			
 (b) Find the exact range of values of x for which the curve is increasing. (Total for question 8 is 5 mar A curve has the equation y = 2x³ - 12x² + 18x + 5 (a) The curve has a local minimum at P, find the coordinates of P. (b) Justify that P is a minimum point. (Total for question 9 is 6 mar 	(2) <u>ks)</u> (4) (2) <u>ks)</u>			
 (Total for question 8 is 5 mar A curve has the equation y = 2x³ - 12x² + 18x + 5 (a) The curve has a local minimum at P, find the coordinates of P. (b) Justify that P is a minimum point. (Total for question 9 is 6 mar 	<u>ks)</u> (4) (2) <u>ks)</u>			
 A curve has the equation y = 2x³ - 12x² + 18x + 5 (a) The curve has a local minimum at P, find the coordinates of P. (b) Justify that P is a minimum point. (Total for question 9 is 6 mar)	(4) (2) <u>ks)</u>			
 (a) The curve has a local minimum at <i>P</i>, find the coordinates of <i>P</i>. (b) Justify that <i>P</i> is a minimum point. (Total for question 9 is 6 mar)	(4) (2) <u>ks)</u>			
(b) Justify that <i>P</i> is a minimum point. (Total for question 9 is 6 mar	(2) <u>ks)</u>			
(Total for question 9 is 6 mar	ks)			
A curve has the equation $y = 3x^2 - 5x + 7$				
Find the equation of the tangent to the curve at the point $P(2, 9)$.				
Write your answer in the form $y = mx + c$, where <i>m</i> and <i>c</i> are integers to be found.				
(Total for question 10 is 5 ma	rks)			
 A curve has the equation y = g(x) Given that g(x) is a cubic expression in which the coefficient of x³ is equal to the coefficient of x the curve with equation y = g(x) passes through the origin the curve with equation y = g(x) has a stationary point at (2, -10) 				
(a) Find $g(x)$	(7)			
(b) prove that the stationary point at (2, -10) is a minimum.	(2)			
(Total for question 11 is 9 ma	rks)			
State the interval for which $y = \sin x$ is a decreasing function for $0^\circ \le x \le 360^\circ$				
(Total for question 12 is 2 ma	rks)			
State the interval for which $y = \cos x$ is an increasing function for $0^\circ \le x \le 360^\circ$				
(Total for question 13 is 2 ma	rks)			
F F ((((((A curve has the equation $y = 3x^2 - 5x + 7$ Find the equation of the tangent to the curve at the point $P(2, 9)$. Write your answer in the form $y = mx + c$, where m and c are integers to be found. (Total for question 10 is 5 ma A curve has the equation $y = g(x)$ Siven that • $g(x)$ is a cubic expression in which the coefficient of x^3 is equal to the coefficient of x • the curve with equation $y = g(x)$ passes through the origin • the curve with equation $y = g(x)$ has a stationary point at $(2, -10)$ a) Find $g(x)$ b) prove that the stationary point at $(2, -10)$ is a minimum. (Total for question 11 is 9 ma State the interval for which $y = \sin x$ is a decreasing function for $0^\circ \le x \le 360^\circ$ (Total for question 12 is 2 ma State the interval for which $y = \cos x$ is an increasing function for $0^\circ \le x \le 360^\circ$			

14	$y = 2x^3 + 5x^2 - 7x + 10$	
	Find the equation of the tangent at the point where $x = 1$ Give your answer in the form $y = mx + c$	
	(Total for question	n 14 is 6 marks)
15	$f(x) = 2x^3 + x^2 - 18x + 2$	
	The points A and B lie on the curve $y = f(x)$. The gradient at both A and B is 2. Find the coordinates of A and B.	
	(Total for question	n 15 is 6 marks)
16	$y = \frac{(4x-1)(x+2)}{2x}$	
	Find the equation of the normal at the point when $x = -2$ Give your answer in the form $ax + by + c = 0$ where <i>a</i> , <i>b</i> and <i>c</i> are integers.	
	(Total for question	n 16 is 6 marks)
17	A simple model for the cost of a car journey $\pounds C$ when a car is driven at a steady spec	ed of <i>v</i> mph is
	$C = \frac{4500}{v} + v + 10$	-
	(a) Use this model to find the value of v which minimises the cost of the journey.	(5)
	(b) Use $\frac{d^2C}{dv^2}$ to verify that C is a minimum for this value of v	(2)
	(c) Calculate the minimum cost of the journey	(2)
	(Total for question	n 17 is 9 marks)
18	A cylinder has a radius r and a height h . The surface area of the cylinder is 500cm ²	
	(a) Show that the volume ($V \mathrm{cm}^3$) of the cylinder is given by $V = 250r - \pi r^3$	(4)
	Given that <i>r</i> varies	
	(b) Calculate the maximum value of V , to the nearest cm ³	(6)
	(c) Justify that the value of V you found is a maximum.	(2)
	(Total for question	n 18 is 12 marks)
19	A curve has the equation $y = 4x^3 + 15x^2 - 18x + 5$	
	Find the coordinates of the stationary points and determine the nature of each station	ary point.
	(Total for question	n 19 is 6 marks)

20	A curve has equation $y = 3x^2 - 16x\sqrt{x} + 18x - 2$ for $x \ge 0$	
	(a) Prove that the curve has a maximum point at (1, 3) Fully justify your answer.	(9)
	(b) Find the coordinates of the other stationary point of the curve and state its nature.	(2)
	(Total for question 20 is 1	l marks)
		<u> </u>
21	A company is designing a cup. The cup will be in the shape of a cylinder with radius x and h	eight <i>h</i> .
	The cup does not have a lid and must hold 450 ml of liquid.	
	(a) Show that the surface area of the cup is given by $\pi x^2 + \frac{900}{r}$	(4)
	(b) Find, to 2 decimal places, the value of x that makes the surface area a minimum.	(4)
	(c) Justify that the value of x you found is a minimum.	(2)
	(d) Give a reason why the company may not choose to make a cup with a radius this size.	(1)
	(Total for question 21 is 1	l marks)
22	Prove that the curve with equation	
	$y = 4x^5 + 15x^4 + 20x^3 + 7$	
	only has one stationary point, stating its coordinates.	
	(Total for question 22 is 6	marks)
•••		
23	A curve has equation	
	$y = 2x^3 - 3x^2 + 4x - 5$	
	(a) Find $\frac{dy}{dx}$	(4)
	(b) Show that the perpendicular bisector of the line joining $A(6, 2)$ and $B(4, -6)$ is a normal to curve at $(1, -1)$.	to the (6)
	(Total for question 23 is 1	0 marks)
24	A curve has equation	
	$y = x^3 + px^2 + qx - 5$	
	The curve passes through the point $A(2, 1)$	
	The gradient of the curve at A is 5.	
	Find the value of p and the value of q .	
	(Total for question 24 is 5	marks)

25	A curve has equation $f(x) = (x + 3)(x - 2)^2$		
	(a) Find the coordinates of the turning points of the curve. Determine the nature of each turning point.	(8)	5)
	(b) State the coordinates of the turning points of the curve $y = 2$	$ef(x-1) \tag{2}$)
		(Total for question 25 is 10 mai	rks)
26	A curve has equation $y = 3x^4 - 2\sqrt{x} + \frac{x}{x} - 2$		
20	Find an expression for $\frac{d^2y}{d^2y}$		
	Find an expression for $\frac{1}{dx^2}$		
		(Total for question 26 is 3 mark	ks)
27	A curve has equation $y = ax^2 - \frac{b}{\sqrt{x}} + \frac{c}{x}$		
	(a) In terms of a, b and c, find an expression for $\frac{dy}{dx}$	(4))
	(b) In terms of a, b and c, find an expression for $\frac{d^2y}{dx^2}$	(3))
		(Total for question 27 is 7 marl	ks)
28	A curve has equation $y = x^2 - 4x$		
	(a) Find $\frac{dy}{dx}$	(2))
	(b) Find the values of x for which y is increasing.	(2))
		(Total for question 28 is 10 mai	rks)
29	The line $y = 3x + k$ is a tangent to the curve $x^2 - y = 3$. Find the	e value of the constant k .	
		(Total for question 29 is 5 mark	ks)
30	Find the equation of the normal to the curve $y = 2\sqrt{x} + 3x + 1$	at the point where $x = 4$.	
	Give your answer in the form $ax + by + c = 0$, where a, b and c a	are integers.	
		(Total for question 30 is 7 mark	ks)
31	Find the equation of the normal to the curve $y = (2x - 1)^2$ at the	e point where $x = 2$.	
	Give your answer in the form $y = mx + c$		
		(Total for question 31 is 6 mark	ks)

(Total for question 34 is 6 marks)

		unity 5 results.						
	x	f(x)	h	x+h	f(x+h)	Gradient		
	3	-7	1	4	-14	-7		
	3	-7	0.1	3.1	-7.61			
	3	-7	0.01					
	3	-7	0.001					
	(a) Complete the table.							
	(b) Suggest the limit for the gradient of these chords as h tends to 0.							
					(Total for	question 35 is (i mark	
						•		
	A cuboid ABCDE	F has width $2x$, 1	height x and de	epth y.				
	The volume of the cuboid is 600 cm ³ . The surface area of the cuboid is $S \text{ cm}^2$.							
	(a) Show that $S = 4 x^2 + \frac{1800}{100}$							
	(a) Show that $y = \pi x^{-1} x^{-1}$							
	(b) Determine the value of x for which the surface area of the cuboid is a minimum.							
	(c) Find, to the nearest integer, the minimum value of S.						(1	
					(Total for	question 36 is 1	l0 mar	
			1					
	(i) A curve has equation $y = 8x + \frac{1}{2x^2}$							
	(a) Find an expres	sion for $\frac{dy}{dy}$						
	dx							
	(b) Find an expres	ssion for $\frac{d^2y}{dx^2}$					(2)	
	(ii) Hence find the coordinates of the stationary point and determine its nature.						(5)	
					(Total for	question 37 is 9) mark	
			1 1	c 2 ²	o./─ ·	• • • • ,		
	Show that the only	stationary poin	it on the graph	of $y = 2x^2$ -	$-8\sqrt{x}$ is a m	inimum point a	t (1, -6	

39	Prove, from first principles, that the derivative of $4x$ is 4.	
		(Total for question 39 is 4 marks)
40	Prove, from first principles, that the derivative of x^3 is $3x^2$.	
		(Total for question 40 is 5 marks)
41	Prove, from first principles, that the derivative of $2x^3$ is $6x^2$.	
		(Total for question 41 is 5 marks)
42	Prove, from first principles, that the derivative of $5x^2$ is $10x$.	
		(Total for question 42 is 4 marks)
43	Prove, from first principles, that the derivative of kx^3 is $3kx^2$. Where <i>k</i> is a constant.	
		(Total for question 43 is 5 marks)
44	A curve <i>C</i> has equation $y = 3x^2 + 1$	
	The point $P(3, 28)$ lies on the curve.	
	(a) Find the gradient of the tangent at P .	(2)
	The point Q with x-coordinate $(3 + h)$ also lies on C.	
	(b) Find the gradient of the line PQ, giving your answer in term	ns of h in its simplest form. (3)
	(c) Explain briefly the relationship between part (b) and the an	swer to part (a). (1)
		(Total for question 44 is 6 marks)
45	Differentiate $3x^2 + x$ from first principles.	
		(Total for question 45 is 5 marks)
46	Differentiate $4x - 3x^2$ from first principles.	
		(Total for question 46 is 5 marks)

 (a) Sketch the gradient function of the curve y = x³ + 3x² - 24x (b) Determine the set of values for which x³ + 3x² - 24x is increasing 	
(b) Determine the set of values for which $x^3 + 3x^2 - 24x$ is increasing	(5)
	(2)
(Total	for question 47 is 7 marks)
8 A curve has equation $y = x^3 + x^2$ A normal to the curve is drawn at the point where $x = 1$ and meets the x	-axis at <i>A</i> and the <i>y</i> -axis at <i>B</i> .
(a) Find the area of <i>OAB</i> .	(6)
(b) Use calculus to prove the curve has one local maximum and one lo	cal minimum point. (6)
(Total	for question 48 is 12 marks)
49 The equation of a curve is $y = 4\sqrt{x} - 8x^2$	
(a) Find $\frac{dy}{dy}$	(3)
(b) Find the coordinates of the turning point.	(3)
(c) Determine the nature of the turning point.	(2)
(Tota)	for question 49 is 8 marks)
(1013)	for question 49 is 8 marks)