

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks	
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$			
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1	
		$\frac{6t^{-2}}{3}$, simplified or un-simplified, in terms of <i>t</i> . See note.	A1 isw	
		Shoth $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]	
	Note: You can	recover the work for part (a) in part (b).		
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^3}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1	
		Correct un-simplified or simplified answer, in terms of <i>t</i> . See note.	A1 isw	
			[2]	
(b)	$\left\{t = \frac{1}{2} \Rightarrow \right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}$, $y = -7$ or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	B1	
	$\begin{cases} t = \frac{1}{2} \implies P\left(-\frac{5}{2}, -7\right) \\ \frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2} \text{and either} \end{cases}$	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$		
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$	which contains t in order to find $m_{\rm T}$ and either		
	2 /	applies y - (their y_p) = (their m_T)(x - their x_p)	M1	
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c	or finds c from (their y_p) = (their m_T)(their x_p) + c		
	So, $y = (\text{their } m_{\text{T}})x + "c"$	and uses their numerical c in $y = (\text{their } m_{\text{T}})x + c$		
	T : $y = 8x + 13$	y = 8x + 13 or $y = 13 + 8x$	A1 cso	
	Note: their x_P , their y_P and the	neir m_T must be numerical values in order to award M1	[3]	
	$\int_{t-}^{x+4} x + 4 \rightarrow \begin{cases} y-5-6 \end{cases}$	An attempt to eliminate <i>t</i> . See notes.	M1	
(c) Way 1	$\left\{ t = \frac{x+4}{3} \implies \right\} \ y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$	Achieves a correct equation in x and y only	A1 o.e.	
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)}{x+4}$	<u>-18</u> 4		
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso	
			[3]	
(c)	$\begin{cases} t = \frac{6}{3} \implies x = \frac{18}{3} - 4 \end{cases}$	An attempt to eliminate <i>t</i> . See notes.	M1	
Way 2	$\left\{ t = \frac{6}{5 - y} \implies \right\} x = \frac{18}{5 - y} - 4$	Achieves a correct equation in x and y only	A1 o.e.	
	$(x + 4)(5 - y) = 18 \rightarrow 5x - xy + 5x$	-		
	$\{ \triangleright 5x + 2 = y(x+4) \}$ So, $y = \frac{5x+4}{x+4}$	$\frac{-2}{4}$, $\left\{x > -4\right\}$ $y = \frac{5x+2}{x+4}$ (or implied equation)	A1 cso	
			[3]	
	Note: Some or all of the work for part (c) can be recovered in part (a) or part (b)			

Question Number		Scheme	Notes	Marks		
1. (c) Way 3	3at - 4	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \Rightarrow a = 5$	A full method leading to the value of <i>a</i> being found	M1		
Way 3	$y - \frac{1}{3t - t}$	$\frac{4+4}{4+4} = \frac{3t}{3t} = \frac{3t}{3t} = \frac{3t}{3t} = \frac{3t}{3t}$	$y = a - \frac{4a - b}{3t} \text{and} a = 5$	A1		
	$\frac{4a-b}{3} = 6$	$b \Rightarrow b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1		
				[3]		
		Question 1 No	tes			
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1			
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.				
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$	or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$ is M0.			
	Note	Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.				
	Note	Final A1: You can ignore subsequent working to				
(c)	Note	 1st M1: A full attempt to eliminate t is defined a rearranging one of the parametric equation the other parametric equation (only the rearranging both parametric equations to each other. 	ons to make <i>t</i> the subject and substituti e RHS of the equation required for M is	mark)		
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.				

Question Number			Scheme		Notes	Marks	
2.	$\left\{ (2+k.\right.$	$x)^{-3} = 2^{-3} \left(1 + \frac{1}{2}\right)^{-3}$	$\left(\frac{kx}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)^2+\ldots\right\}, k$	> 0		
(a)	A =	1/8	$\frac{1}{8}$ or 2^{-3} or 0.125, clearly identified as A or as their answer to part (a)				
						[1]	
			Uses	s the x^2 term of the binomial expansion	ansion to give		
			either $\frac{(-3)}{2}$	$\frac{(-4)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{kx}{2}\right)^2$ or $\frac{(-4)}{2!}$	$\frac{-3)(-4)}{2}$ or 6	M1	
(b)	$\left(\frac{1}{8}\right)^{\frac{(-3)}{2}}$	either (their A) $\frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)^2$ or (their A) $\frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)^2$ or (their A) $\frac{(-3)(-4)}{2!} \left(\frac{kx}{2}\right)^2$, where (their A) $\frac{3}{16}k^2$ or $\frac{3}{16}k^2$					
	$\begin{cases} So, \left(\frac{1}{8}\right) \end{cases}$	$\left\{ \text{So, } \left(\frac{1}{8} \right) \frac{(-3)(-4)}{2!} \left(\frac{k}{2} \right)^2 = \frac{243}{16} \Rightarrow \frac{3}{16} k^2 = \frac{243}{16} \Rightarrow k^2 = 81 \right\}$					
	So, k				k=9 cao	+	
(a)		No		erence to $k = 9$ only is A0	to cive cithon	[3]	
(c)			, ,	term of the binomial expansion (kx)	-		
	$\left(\frac{1}{8}\right)^{n}$	(their A)(-3) $\left(\frac{k}{2}\right)$ or (their A)(-3) $\left(\frac{kx}{2}\right)$; where (their A) 1,					
	(3)	(- /		or $(2)^{-4}(-3)(k)$ or $(2)^{-4}(-3)(k)$	$(kx) \text{ or } -\frac{3k}{16}$		
	$\begin{cases} So, B = \\ \end{cases}$	$= \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	$\left \Rightarrow \right\} \ \underline{B = -\frac{27}{16}}$	$-\frac{27}{16}$ or $-1\frac{11}{16}$	or -1.6875	A1 cso	
						[2]	
			One	estion 2 Notes		6	
	NOTE	IN THIS QU		BELLING AND MARK ALL PA	ARTS TOGE	THER.	
	Note	$(2+kx)^{-3} = \frac{1}{8}$	$\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 + \dots\right)$	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k^2x^2 + \dots$			
	Note	Note Writing down $\left\{ \left(1 + \frac{kx}{2} \right)^{-3} \right\} = 1 + (-3) \left(\frac{kx}{2} \right) + \frac{(-3)(-3-1)}{2!} \left(\frac{kx}{2} \right)^2 + \dots$					
		gets (b) 1 st M1	,	(-)	`		
	Note	Writing down $\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-3) \left(\frac{kx}{2} \right) + \frac{(-3)(-3-1)}{2!} \left(\frac{kx}{2} \right)^2 + \dots \right)$					
		gets (b) 1 st M1 2 nd M1 and (c) M1					
	Note	Note Writing down $\{(2+kx)^{-3}\}=2^{-3}+(-3)(2^{-4})(kx)+\frac{(-3)(-4)}{2}(2^{-5})(kx)^2$					
			1 2 nd M1 and (c) M1	~			
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = (\text{their } A)$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)\right)$	$\left(\frac{x}{2}\right)^2 + \dots$		
		where (their a	A) 1, gets (b) 1 st M1 2 st	and (c) M1	-		

		Question 2 Notes		
2. (b), (c)	Note	(their A) is defined as either		
		• their answer to part (a)		
		• their stated $A =$		
		• their "2 ⁻³ " in their stated $2^{-3} \left(1 + \frac{kx}{2}\right)^{-3}$		
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1		
	Note	Give M0 in part (c) if (their A) = 1		
2. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$		
	Note	Award A0 for $B = -\frac{27}{16}x$		
	Note Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875			
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0		
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.		
	Note	The A1 mark in part (c) is for a correct solution only.		
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.		
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8}\left(1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^2+\ldots\right) = \frac{1}{8}-\frac{3k}{8}x+\frac{3k^2}{4}x^2+\ldots$		
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0		
2. (b), (c)	Note	$^{-3}C_0(2)^{-3} + ^{-3}C_1(2)^{-4}(kx) + ^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated		
		gets (b) 1 st M0 2 nd M0 and (c) M0		

Question Number	Scheme			Notes		Marks	
2	x 0 0.2 0.	4 0.6	(0.8	1	v = 6	
3.	y 2 1.8625426 1.71	830 1.56981	1.4	1994	1.27165	$y = \frac{6}{(2 + e^x)}$	
(a)	${At \ x = 0.2, \ y = 1.86254 \ (5 \ dp)}$					1.86254	B1 cao
	Note: Look for this v	alue on the given	tabl	e or in t	heir workin	g.	[1]
					Outside	brackets $\frac{1}{2} \times (0.2)$	B1 o.e.
(b)	$\frac{1}{2}(0.2) \Big[2 + 1.27165 + 2 \Big(\text{their } 1.86254 + 1.6 \Big) \Big]$	$\frac{1}{2}(0.2) \underbrace{\left[2 + 1.27165 + 2\left(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994\right)\right]}_{\text{For structure of }} \underbrace{\qquad \text{or } \frac{1}{10} \text{ or } \frac{1}{2} \times \frac{1}{5}}_{\text{For structure of }} \underbrace{\qquad \text{For structure of }}_{\text{constant of }}$					
					For str	ucture of []	M1
	$\left\{ = \frac{1}{10}(16.41283) \right\} = 1.641283 = 1.64$	13 (4 dp)		8	anything tha	t rounds to 1.6413	A1
							[3]
(c)	$\{u=e^x \text{ or } x=\ln u \triangleright \}$						
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{u} \text{ or } \mathrm{d}x$	$u = u \mathrm{d}x \mathrm{etc.}, \mathrm{an}$	d Ò	$\frac{6}{(e^x + 2)}$	$\int_{0}^{\infty} dx = \int_{0}^{\infty} \frac{1}{(u + 1)^{2}} dx$	$\frac{6}{(2)u} du$ See notes	B1 *
	$\{x=0\} \bowtie a=e^0 \bowtie \underline{a=1}$				a=1 ar	$ad b = e or b = e^1$	D1
	$\{x=1\} \bowtie b=e^1 \bowtie \underline{b=e}$					$0 \rightarrow 1$ and $1 \rightarrow e$	B1
	NOTE: 1 st B1 mark CANNOT be recovered for work in part (d) NOTE: 2 nd B1 mark CAN be recovered for work in part (d)					[2]	
(d) Way 1	$\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$ Writing	$\frac{6}{u(u+2)}$ $\circ \frac{A}{u}$ +	$\frac{B}{(u+$	$\frac{3}{(2)}$, o.e	$e. \text{ or } \frac{1}{u(u+2)}$	$\frac{P}{2} \circ \frac{P}{u} + \frac{Q}{(u+2)},$	M1
			hod	for find	ing the value	e of at least one of heir <i>P</i> or their <i>Q</i>)	1,11
	$u = 0 \bowtie A = 3$ Both	their $A = 3$ and			-	$P = \frac{1}{2}$ and their	
	$u = 0 \Rightarrow A = 3$ $u = -2 \Rightarrow B = -3$					f the integral sign)	A1
	f 6 f (2 2)					$\frac{1}{k}$, M, N, k^{-1} 0;	
	$\int \frac{6}{u(u+2)} du = \int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$						M1
		· ·		-	•	n) to obtain either	
	$=3\ln u - 3\ln(u+2)$					(a); /, m, a, b 1 0 (b) followed through	
	or = $3\ln 2u - 3\ln(2u + 4)$	Integration of	DOIII		-	and from their N.	A1 ft
	$\left\{\operatorname{So}\left[3\ln u - 3\ln(u+2)\right]_{1}^{\mathrm{e}}\right\}$			d	-	n the 2 nd M mark	
	$= (3\ln(e) - 3\ln(e + 2)) - (3\ln 1 - 3\ln 3)$	(or their b a	and tl	heir <i>a</i> , v		es limits of e and 1 $b^{-1}1, a > 0$ in u	dM1
	[Note: A proper consideration of the					and subtracts the	0.1.11
	limit of $u = 1$ is required for this mark]			C	correct way round.	
	$= 3-3\ln(e+2) + 3\ln 3$ or $3(1-\ln(e+2))$	$+2) + \ln 3$) or 3	3 + 3	$\ln\left(\frac{3}{e+1}\right)$	$\overline{2}$		
	or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$ or $3 - 3\ln\left(\frac{e+2}{3}\right)$ or $3\ln\left(\frac{3e}{e+2}\right)$ or $\ln\left(\frac{27e^3}{(e+2)^3}\right)$ see notes					A1 cso	
	Note: Allow e	in place of e fo	r the	final A	1 mark.	<u> </u>	[6]
	Note: Give final A0 for $3 - 3 \ln e + 2 + 2 \ln e$	<u> </u>					12
	Note: Give final A0 for 3 – 3ln(e + 2)					•	
	Note: Give final A0 for 3lne - 3ln(e	$+2) + 3\ln 3$, whe	re 31	lne has	not been sin	nplified to 3	

		Question 3 Notes				
3. (b)	Note	M1: Do not allow an extra y-value or a repeated y value in their []				
3. (0)		Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of				
		awrt 1.6413, in which case both M1 and A1 can be scored.				
		A1: Working must be seen to demonstrate the use of the trapezium rule.				
		(Actual area is 1.64150274)				
		Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)				
	Note	Award B1M1A1 for				
		1 (2 - 1.27165) + 1 (41-1-1.20054 + 1.71920 + 1.56991 + 1.41994)				
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$				
		ing mistakes: Unless the final answer implies that the calculation has been done correctly				
	Diucke	1				
	Award I	$31M0A0 \text{ for } \frac{1}{2}(0.2) + 2 + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 \ \ (=16.51283)$				
	Award I	$\frac{1}{21M0A0}$ for $\frac{1}{(0.2)(2+1.27165)} + \frac{2}{(100)}$ (their 1.86254 + 1.71830 + 1.56081 + 1.41004) (=13.468345)				
	Awaru i	$31M0A0 \text{ for } \frac{1}{2}(0.2)(2 + 1.27165) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)$				
		1				
	Award I	$31M0A0 \text{ for } \frac{1}{2}(0.2)(2) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)$				
		tive method: Adding individual trapezia				
	Area ≈ 0	$.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$				
	= 1	.641283				
	B 1	0.2 and a divisor of 2 on all terms inside brackets				
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2				
	A1	anything that rounds to 1.6413				
2 ()		Must start from either				
3. (c)	1st B1	Willst start from either				
		• $\int y dx$, with integral sign and dx				
		y av, wan megan sign and av				
		. 6				
		• $\hat{0} \frac{6}{(e^x + 2)} dx$, with integral sign and dx				
		• $\int \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$				
		$\int \frac{du}{(e^x + 2)} \frac{du}{du}$, with integral sign and $\frac{du}{du}$				
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$				
		dx dx du u				
		and end at $\partial \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.				
		$\int u(u+2)^{-u} u(u+2)^{-u} du$				
		du > 6 > 6				
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\hat{\int} \frac{6}{(e^x + 2)} dx = \hat{\int} \frac{6}{u(u + 2)} du$ is sufficient for 1st B1				
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$				
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.				
		Proceeding from $\int_{0}^{\infty} \frac{6}{u(u+2)} du$ to $\int_{0}^{\infty} \frac{6}{(e^{x}+2)} dx$, with no incorrect working,				
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$				
		dx dx du u				
3. (d)	Note	Give final A0 for $3 - 3\ln(e+2) + 3\ln 3$ simplifying to $1 - \ln(e+2) + \ln 3$				
		(i.e. dividing their correct final answer by 3)				
	N7 (Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.				
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0				
	Note	$\left[-3\ln(u+2) + 3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0				
	21000	[

		Question 3 Notes Continued
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.
	Note	Award M0A0M1A1ft for a candidate who writes down
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
	Note	Award M0A0M0A0 for a candidate who writes down
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	Award M1A1M1A1 for a candidate who writes down
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	If they lose the "6" and find $\int_{1}^{e} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0

			Question	3 Notes Contin	nued		
3. (d) Way 2	$\left\{ \int \frac{6}{u^2 + 2u} du = \int \frac{3(2u + 2)}{u^2 + 2u} du - \int \frac{6u}{u^2 + 2u} du \right\}$						
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	и	$\hat{0}^{\pm a}$	$\frac{2(2u+2)}{u^2+2u}\left\{\mathrm{d}u\right\} =$	$\pm \grave{0} \frac{\mathcal{O}}{u+2} \{ \mathrm{d}u \},$	$\alpha, \beta, \delta \neq 0$	M1
	$\int u + 2u$ $\int u + 2$				Correc	t expression	A1
		Int	egrates $\frac{\pm N}{n}$	$\frac{M(2u+2)}{u^2+2u}\pm\frac{M(2u+2)}{u^2+2u}$	$\frac{N}{k}$, M, N, k^{-1}	0, to obtain	M1
	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$		any one	$e ext{ of } \pm / \ln(u^2 + $	$\pm 2u$) or $\pm m \ln 2u$	$(b(u \pm k));$	IVII
	Integration of			n terms is corre	ctly followed th their <i>M</i> and f	_	A1 ft
	(or their b and the second contains a and b			Applies limit or their b and th $b > 0, b^{-1} 1.$	ts of e and 1 eir a, where	dM1	
	$= \left(3\ln(e^2 + 2e) - 6\ln(e + 2)\right)$	$= \left(3\ln(e^2 + 2e) - 6\ln(e + 2)\right) - \left(3\ln 3 - 6\ln 4\right)$			ies limits of 1 an	d 0 in x and	
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	-3ln3		3ln($e^2 + 2e) - 6\ln(e -$	$+2) + 3 \ln 3$	A1 o.e.
2 (1)	Applying a 2 1					<u> </u>	[6]
3. (d) Way 3	Applying $u = Q - 1$ $\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} d\theta =$			$\frac{6}{\theta^2 - 1} du = \left[3\ln \frac{1}{\theta^2 - 1} \right]$	$\left(\frac{\theta-1}{\theta+1}\right)^{1+e}_{2}$		M1A1M1A1
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-1}{2+1}\right)$	$\left(\frac{1}{1}\right) = 3\ln \left(\frac{1}{1}\right)$	$n\left(\frac{e}{e+2}\right)$ -	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i	s dependent 2 nd M mark	dM1A1
							[6]

Question Number	Scheme		Notes	Marks		
4.	$4x^2 - y^3 - 4xy + 2^y = 0$					
(a) Way 1	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{} = \underbrace{\frac{4y - 4x \frac{dy}{dx}}_{}}_{} + \underbrace{\frac{2^y \ln 2 \frac{dy}{dx}}_{}}_{} = 0$			M1 <u>A1</u> <u>M1</u> B1		
	$8(-2) - 3(4)^{2} \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^{4} \ln 2 \frac{dy}{dx} =$	0 depe	ndent on the first M mark	dM1		
	$-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 0$					
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{4}{-5 + 2}$	$\frac{1}{\ln 2}$ or $\frac{1}{-3}$	$\frac{4}{5 + \ln 4}$ or exact equivalent	A1 cso		
	NOTE: You can recover work f			[6]		
(b)	e.g. $m_{\text{N}} = \frac{-40 + 16 \ln 2}{-32}$ or $\frac{40 - 16 \ln 2}{32}$ Appl	ying $m_{\rm N} =$	$\frac{-1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$	M1		
		Can be	implied by later working			
	• $y-4=\left(\frac{40-16\ln 2}{32}\right)(x-2)$		Using a numerical $m_{\rm N}$ (1 $m_{\rm T}$), either			
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = \left(\frac{40 - 1}{3}\right)$	$\left(\frac{16\ln 2}{2}\right)$	$y-4 = m_N(x-2)$ and sets $x=0$ in their normal equation	M1		
	• $4 = \left(\frac{40 - 16\ln 2}{32}\right)\left(-2\right) + c$		4 = (their m_N)(-2) + c			
	$\Rightarrow c = 4 + \frac{40 - 16\ln 2}{16}, \text{ so } y = \frac{104 - 16\ln 2}{16} \Rightarrow$					
	$y \text{ (or } c) = \frac{13}{2} - \ln 2$	$\frac{04}{16} - \ln 2$ o	$\frac{13}{2} - \ln 2$ or $-\ln 2 + \frac{13}{2}$	A1 cso isw		
	Note: Allow exact equivalents in the form	$n p - \ln 2 f$	or the final A mark	[3]		
				9		
(a) Way 2	$\left\{\frac{2x}{2y}\right\} \times \left\{8x\frac{dx}{dy} - 3y^2\right\} - 4y\frac{dx}{dy} - 4x + \overline{2^y \ln 2} = 0$			M1 <u>A1</u> <u>M1</u> B1		
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2 = 0$	depe	ndent on the first M mark	dM1		
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{32}{40 - 16 \ln 2}$ or $\frac{1}{-5 + 2}$	A1 cso				
	Note: You must be clear that Way 2 is being	[6]				
4 ()	Ques					
4. (a)	Note For the first four marks Writing down from no working • $\frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2}$ or $\frac{8x - 4y}{3y^2 + 4x - 2^y \ln 2}$ scores M1A1M1B1 • $\frac{dy}{dx} = \frac{8x - 4y}{-3y^2 - 4x + 2^y \ln 2}$ or $\frac{4y - 8x}{3y^2 + 4x - 2^y \ln 2}$ scores M1A0M1B1					
	Writing $8x dx - 3y^2 dy - 4y dx - 4x dy$	$+ 2^y \ln 2 dy$	= 0 scores M1A1M1B1			

		Question 4 Notes Continued
4. (a)	1st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm m2^y \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). /, m are constants which can be 1
	1st <u>A1</u>	Both $4x^2 - y^3 \to 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \to = 0$
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$
		or e.g. $-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} \rightarrow -48\frac{dy}{dx} + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 32$
		will get 1^{st} A1 (implied) as the "= 0" can be implied by the rearrangement of their equation.
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x \frac{dy}{dx} \text{ or } 4y - 4x \frac{dy}{dx} \text{ or } -4y + 4x \frac{dy}{dx} \text{ or } 4y + 4x \frac{dy}{dx}$
		$2^y \to 2^y \ln 2 \frac{dy}{dx}$ or $2^y \to e^{y \ln 2} \ln 2 \frac{dy}{dx}$
	Note	If an extra term appears then award 1 st A0
	$3^{rd} dM1$	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one
		example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been
		substituted into their equation involving $\frac{dy}{dx}$
	Note	A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	isw: You can, however, ignore subsequent working following on from correct solution.
(b)	Note	The 2 nd M1 mark can be implied by later working.
		Fig. Award 1st M1 and 2nd M1 for $y-4$ — ——————————————————————————————————
		Eg. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x=-2 \text{ and } y=4}$
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln \left(\frac{1}{2}\right) + \frac{13}{2\ln 2} (\ln 2)$ which is in the form $p + q \ln 2$
4. (a) Way 2	1st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm /x \frac{dx}{dy}$
		(Ignore $\left(\frac{dx}{dy}\right)$). / is a constant which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x \frac{dx}{dy} - 3y^2$ and $= 0 \to = 0$
	2 nd M1	$-4xy \rightarrow -4y\frac{dx}{dy} - 4x \text{ or } 4y\frac{dx}{dy} - 4x \text{ or } -4y\frac{dx}{dy} + 4x \text{ or } 4y\frac{dx}{dy} + 4x$
		$2^{y} \rightarrow 2^{y} \ln 2$
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$

Question Number		Scheme		Notes	Marks	
5.	$y = e^{x}$	$x^{2} + 2e^{-x}, x^{3}0$				
Way 1	${V = } \rho$	$\int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	Ig	For $\pi \int (e^x + 2e^{-x})^2$ nore limits and dx. Can be implied.	B1	
	$=\{\pi$	$\int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	Expands $\left(e^{x} + \right)$	$(2e^{-x})^2 \rightarrow \pm \partial e^{2x} \pm \partial e^{-2x} \pm \partial$ where nore π , integral sign, limits and dx . This can be implied by later work.	M1	
				one of either $\pm a e^{2x}$ to give $\pm \frac{a}{2} e^{2x}$ or $\pm b e^{-2x}$ to give $\pm \frac{b}{2} e^{-2x} a$, $b = 0$	M1	
	= { D	$\left\{ \int \frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right\}^{\ln 4}$		dependent on the 2 nd M mark		
	(/-			$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$	A1 J	
			whic	ch can be simplified or un-simplified	7.1	
				$4 \rightarrow 4x \text{ or } 4e^{0}x$ dependent on the previous	B1 cao	
	= {p}(($\left(\frac{1}{2}e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2}e^{2(\ln 4)}\right)$	method mark. Some evidence of			
	$=\{\pi\}\Big(\Big($	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$				
	$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4\ln 4\right) \text{ or } \pi \left(\frac{75}{8} + 8\ln 2\right)$ or $\frac{75}{8}\rho + \ln 2^{8\rho} \text{ or } \frac{75}{8}\rho + \rho \ln 256 \text{ or } \ln \left(2^{8\rho} e^{\frac{75}{8}\rho}\right) \text{ or } \frac{1}{8}\rho \left(75 + 32\ln 4\right), \text{ etc}$					
					[7]	
			Question 5 N	lotes	<u> </u>	
5.	Note	π is only required for the 1 st B	1 mark and the fina	al A1 mark.		
	Note	Give 1 st B0 for writing $p \hat{j} y^2 \hat{c}$		<u> </u>		
	Note	Give 1 st M1 for $\left(e^x + 2e^{-x}\right)^2 \rightarrow$	$\Rightarrow e^{2x} + 4e^{-2x} + 2e^0$	$+ 2e^{0}$ because $\mathcal{Q} = 2e^{0} + 2e^{0}$		
	Note	A decimal answer of 46.8731	or $\rho(14.9201)$	(without a correct exact answer) is A	.0	
	Note $\rho \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_{0}^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1					
	Note Allow exact equivalents which should be in the form $ap + bp \ln c$ or $p(a + b \ln c)$,					
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	5. Do not allow $a =$	$=\frac{150}{16}$ or $9\frac{6}{16}$		
	Note	Give B1M0M1A1B0M1A0 for	r the common respo	onse		
		$\int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx \to \rho \int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	$e^{2x} + 4e^{-2x}\bigg) \mathrm{d}x = \rho \bigg[$	$\frac{1}{2}e^{2x} - 2e^{-2x} \bigg]_0^{\ln 4} = \frac{75}{8}p$		

Question Number	Scheme			Notes	Marks
5.	$y = e^x + 2e^{-x}, x^3 0$				
Way 2	$\left\{V = \right\} \rho \grave{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x}\right)^{2} dx$		Ignore limits	For $\pi \int (e^x + 2e^{-x})^2$ s and dx. Can be implied.	B1
	$u = e^x > \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	$= e^{x} = u \text{ and } x = \ln 4 \implies u = 4, x = 0 \implies u = e^{0} = 1$			
	$V = \{\rho\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} \frac{1}{u} du = \{\rho\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} du = \{\rho\} $	$= \{ \rho \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ \rho \} \int_{1}^{4} \left(u^{2} + \frac{4}{u^{2}} + 4 \right) \frac{1}{u} du$			
	$\left(e^{x} + 2e^{-x}\right)^{2} \to \pm \partial u \pm bu^{-3} \pm du^{-1}$ $= \left\{\rho\right\} \int_{1}^{4} \left(u + \frac{4}{u^{3}} + \frac{4}{u}\right) du$ $\text{where } u = e^{x}, \alpha, \beta, \delta \neq 0.$ $\text{Ignore } \pi, \text{ integral sign, limits and } du.$ $\text{This can be implied by later work.}$				<u>M1</u>
	Integrates at least one of either $\pm au$ to give $\pm \frac{a}{2}u^{2}$ or $\pm bu^{-3}$ to give $\pm \frac{b}{2}u^{-2}a$, $b^{-1}0$, where $u = e^{2}$			2	M1
	$= \{ p \} \left[\frac{1}{2} u^2 - \frac{2}{u^2} + 4 \ln u \right]_1^4$	dependent on the 2 nd M mark $u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2},$ simplified or un-simplified, where $u = e^x$			A1
		$4u^{-1} \rightarrow 4 \ln u$, where $u = e^x$			B1 cao
	$= \left\{ \rho \right\} \left(\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right)$	mark. S limi function in	t on the previous method fome evidence of applying its of 4 and 1 to a changed in u [or ln 4 o.e. and 0 to an function in x] and subtracts the correct way round.	dM1	
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$				
	$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4\ln 4\right) \text{ or } \pi \left(\frac{75}{8} + 8\ln 2\right)$				A1 isw
	or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho$	$9 \ln 256$ or $\ln \left(2^{8\beta} \right)$	$\left(e^{\frac{t^2}{8}\rho}\right)$ or $\left(\frac{1}{8}\right)$	$9(75 + 32 \ln 4)$, etc	
					[7]

Question Number	Scheme					Notes	Marks	
	$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu$	$\begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}; \overline{G}$	$\overrightarrow{DA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix}$	lie	es on l_1	Let q_{Acute} be the acute angle between l_1 and l_2		
(a)	$\{l_1 = l_2 \Rightarrow\} 28 - 5\lambda = 3 \implies \lambda = 5\}$ or $4 - \lambda = 5 + 3\mu$ and $4 + \lambda = 1 - 4\mu \implies \mu$	u = -2	or λ			$28 - 5\lambda = 3$ or m and $4 + l = 1 - 4m$ 2 (Can be implied).	B1	
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$	304		-	tutes their	to find l and/or m value for λ into l_1 value for μ into l_2	M1	
	So, X(-1, 3, 9) (-	1, 3, 9) or	$ \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} $	or –i	i + 3 j + 9	-1 k or condone 3 9	A1 cao	
(b) Way 1	$\mathbf{d_1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$				required	that the dot product between \mathbf{d}_1 and \mathbf{d}_2 ultiple of \mathbf{d}_1 and \mathbf{d}_2	M1	3]_
	$\cos \theta = \frac{\pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2}}$	$+(-4)^2$	$\left\{ = \frac{-7}{\sqrt{27}} \right\}$	<u>'</u> √25 }	1 st	dependent on the \mathbf{M} mark. Applies dot product formula ween \mathbf{d}_1 and \mathbf{d}_2 or a ultiple of \mathbf{d}_1 and \mathbf{d}_2	dM1	
	$\{q = 105.6303588 \ \Rightarrow \} \ \theta_{Acute} = 74.36964$				•	1.37 seen in (b) only	A1	
	(_1) (_2)	(_3)					[3	3]
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} =$	$\left(\begin{array}{c} -15 \\ 3 \end{array}\right)$	or $A_{I=2}$,	X _{/=5}	<i>AX</i> =	$3 \mathbf{d}_1 , \left\{ \mathbf{d}_1 = \sqrt{27} \right\}$		
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2} \text{ or } 3\sqrt{27} $ =	$\sqrt{243}$ = 9	$\sqrt{3}$ F	Full n		r finding AX or XA	M1	
				202 20		$\sqrt{3}$ seen in (c) only	A1 cao	21
	Note: You cannot recover wo	YA	(c) in eith	ier pa	աւ (a) or <u>j</u>	part (e). ⁻ \	[2	2]
(d) Way 1	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$	' '				$\tan \theta$, where θ is	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)	t.	neir acute	or ot		e between l_1 and l_2 g that rounds to 55.7	A1	
	222 2277723m 2277 (1 u p)				anyumi	5 mai Tourius to 33.7		2]
(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B$	$3, \ \lambda = 3.5$	or $\lambda = 0.5$	5)}				
Way 1	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Substi				$\frac{1}{2} \frac{\text{found in } (a)) + 2}{2}$ $\frac{\text{ound in } (a))}{2} \text{ into } l_1$	M1;	
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$		At l	east	_	on vector is correct. allow coordinates).	A1	
	$\begin{array}{c c} 3D & 20 \\ 4 & 30 \\ \end{array}$			Botl	n position	vectors are correct. allow coordinates).	A1	27
								3] 13
<u> </u>		<u> </u>					1	

Question Number	Scheme	Notes	Marks
6. (e)	$\begin{cases} AX = 2AB \Rightarrow AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{A} \end{cases}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX}$	
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = $\pm \left[\text{(their } \overrightarrow{OX}) - \overrightarrow{OA} \right]$	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$ \begin{array}{c c} 6 & 3 \end{array}, \begin{array}{c c} 25.5 \\ 4.5 \end{array} $	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3		$ \begin{array}{c} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{array}; \overrightarrow{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \qquad AX^2 = 243 \bowtie AB^2 = 27(2-1)^2 $	
		$(-/)^2 \Rightarrow (2-/)^2 = \frac{9}{4} \text{ or } 27/^2 - 108/ + \frac{189}{4} = 0$	
	or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 6$	T	
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Full method of solving for $/$ the equation $AX^2 = 4AB^2$ using (their \overrightarrow{AX}) and \overrightarrow{AB} and substitutes at least one of their values for $/$ into l_1	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	4	Both position vectors are correct (Also allow coordinates)	A1
		= 3.5 or $/ = 0.5$ can be found from solving either $\pm 2(10 - 5/)$ or $z: -3 = \pm 2(-2 + /)$	[3]
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} + 0.5 \begin{pmatrix} 3\\15\\-3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{XA} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{XA} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX})	M1;
	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$ \begin{array}{c c} OB = \\ 9 \end{array} $ $ \begin{array}{c c} 3\\ -3 \end{array} $ $ \begin{array}{c} -23.5\\ 4.5 \end{array} $	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	At least one position vector is correct (Also allow coordinates)	A1
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]

Question Number		Scheme		Notes	Marks	
6. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right = \right.$	$\left\{ \left \overrightarrow{AX} \right = 9\sqrt{3}, \left d_1 \right = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overrightarrow{AX} = 3\mathbf{d}_1; \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2} (3\mathbf{d}_1) \right\}$				
	'	$\begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	$\overline{OA} + 0$	Applies either 0.5(K d ₁) or $\overrightarrow{OA} - 0.5(K$ d ₁), where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$	M1;	
	$\overrightarrow{OB} =$	$ \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix} $		(Also allow coordinates) n position vectors are correct (Also allow coordinates)	A1	
				(71130 allow coordinates)	[3]	
		Ques	tion 6 Notes			
6. (a)	Note	M1 can be implied by at least two correct			com their <i>m</i>	
(b)	Note	Evaluating the dot product (i.e. (-1)(3) + for the M1, dM1 marks.	- (-5)(0) + (1)(-	4)) is not required		
	Note	For M1 dM1: Allow one slip in writing	down their direc	etion vectors, $\mathbf{d_1}$ and $\mathbf{d_2}$		
	Note	Allow M1 dM1 for				
		$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right) \cos q = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$				
	Note	$q = 1.297995^{\circ}$, (without evidence of av	vrt 74.37) is A0			
6. (b)		ative Method: Vector Cross Product				
Way 2		pply this scheme if it is clear that a vector $= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} = \end{cases}$)	Paglication that the vector	M1	
	sin q	$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$		Applies the vector product formula between $\mathbf{d_1}$ and $\mathbf{d_2}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_2}$	dM1	
	$\sin q =$	$= \frac{\sqrt{626}}{\sqrt{27}.\sqrt{25}} \bowtie q = 74.36964117 = 74.37$	(2 dp)	awrt 74.37 seen in (b) only	A1	
					[3]	
6. (c)	M1	Finds the difference between their \overrightarrow{OX} and OR applies $ (\text{their }/_X \text{ found in } (a)) - 2 _{\mathcal{N}}$			nd AX or XA	
	Note	, , ,				
	Note For M1: Allow one slip in writing down their OX and OA Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$					
(e)	Note	Imply M1 for no working leading to any tv	vo components o	of one of the \overrightarrow{OB} which are co	orrect.	

Question Number	Scheme				Notes	Ma	rks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$				$ \ln(90 - \theta) $ or $AY = \frac{\text{their } \overrightarrow{AX} }{\tan(90 - \theta)}$, or obtuse angle between l_1 and l_2	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)				anything that rounds to 55.7	A1	
							[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964")}$	")			$\frac{\text{their } AX }{\sin(90-\theta)} \text{ o.e., where } \theta \text{ is the } \theta$ or obtuse angle between l_1 and l_2	M1	
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$	= 55.7 (1 dp)		anything that rounds to 55.7	A1	[2]
							[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	$ = \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix}$					
	$\overrightarrow{YA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu \\ 15 \\ 5+4\mu \end{pmatrix}$						
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}$	= 0		App	(Allow a sign slip in copying \mathbf{d}_1) blies $\overrightarrow{YA} \cdot \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \cdot \mathbf{d}_1 = 0$	M1	
	$ \Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7} $ $YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\left(\frac{67}{7}\right)\right)^{2} $	$\left(\frac{67}{7}\right)^2$	to f	ind <i>m</i>	• $(K\mathbf{d}_1) = 0$ or $\overline{AY} \bullet (K\mathbf{d}_1) = 0$ of and applies Pythagoras to find a cal expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$	1					
	= 55.71758 = 55.7 (1 dp) Note: $\overrightarrow{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overrightarrow{AY} = -$	$\frac{222}{7}$ i + 15 j +	$\frac{303}{7}$	- k	anything that rounds to 55.7	A1	[2]
	1	1	1				

Question Number	Scheme		Notes	Marks		
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k\sqrt{(h-9)}, 9 < h \in 200;$	$h=130, \frac{\mathrm{d}h}{\mathrm{d}t}=-1.1$				
(a)	$-1.1 = k \sqrt{(130 - 9)} \bowtie k =$		30 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ lequation and rearranges to give $k =$	M1		
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1 [2]		
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs.			
	$\int (h-9)^{-\frac{1}{2}} dh = \int k dt$					
	1	Integrates $\frac{1}{\sqrt{2}}$	$\frac{\pm \lambda}{h-9}$ to give $\pm m\sqrt{(h-9)}$; /, $m = 0$	M1		
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left(+c\right)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{1}{2}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c,$	A1		
	${t = 0, h = 200 \triangleright} 2\sqrt{(200 - 9)} =$	k(0) + c	t, which can be un-simplified or simplified. Some evidence of applying both $t = 0$ and $h = 200$ to changed equation ing a constant of integration, e.g. c or A	M1 \		
		$t + 2\sqrt{191}$	dependent on the previous M mark Applies $h = 50$ and their value of c to their changed equation and rearranges to find the value of $t =$	dM1		
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minu	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso		
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit	les correctly. dh and dt should not be ions, although this mark can be implied Integral signs and limits not necessary.	[6] B1		
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$					
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	Integrates $\frac{1}{\sqrt{(}}$	$\frac{\pm \lambda}{h-9}$ to give $\pm m\sqrt{(h-9)}$; /, $m = 0$	M1		
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{or} \frac{(h-1)^{\frac{1}{2}}}{(h-1)^{\frac{1}{2}}} = kt$	$(\frac{(1-9)^{\frac{1}{2}}}{(\frac{1}{2})}) = (\text{their } k)t, \text{ with/without limits,}$	A1		
	2 /41 2 /101 Lt == LT		t, which can be un-simplified or simplified. apts to apply limits of $h = 200$, $h = 50$			
	and (can be implied) it to their enanged equation			M1		
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$ dependent on the previous M mark Then rearranges to find the value of $t =$			dM1		
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minu	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41} $ or awrt 148 or 2 hours and awrt 28 minutes	A1 cso		
				[6] 8		
	<u> </u>			U		

		Question 7 Notes					
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent					
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \ (+c) \text{ with/without } + c \text{ is B1M1A1}$					
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing					
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$					
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in					
		part (b).					

Question Number	Scheme			Notes	Marks	
8.	$x = 3q\sin q, \ y = \sec^3 q, \ 0 \notin q$	$\leq \frac{\rho}{2}$				
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow c$ $k \text{ (or } x) = 3\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$	$\cos^3 \theta = \frac{1}{8} \Rightarrow$	$\cos\theta = \frac{1}{2}$	$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3q \sin q$	M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}p}{2} \text{ or } \frac{3p}{2\sqrt{3}}$	A1
	1	vo value for	k without a	ccepting the	$\frac{\text{correct value is final A0}}{3\theta \sin \theta \to 3\sin \theta + 3\theta \cos \theta}$	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				Can be implied by later working	B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{ \mathrm{d}q \right\} \right\} = \int (\sec^3 q)(3s)$	in <i>q</i> + 3 <i>q</i> cos	q) $\{dq\}$		Applies $\left(\pm K \sec^3 q\right) \left(\text{their } \frac{dx}{dq}\right)$ Ignore integral sign and dq ; K^{-1} 0	M1
	2 2 2		Achieves		result no errors in their working, e.g.	
	$= 3 \grave{0} q \sec^2 q + \tan q \sec^2 q \mathrm{d}q$		Must	t have integra	bracketing or manipulation errors. al sign and $d\theta$ in their final answer.	A1 *
	$x = 0$ and $x = k \implies \underline{\alpha} = 0$ and	$\beta = \frac{\pi}{3}$	$\alpha = 0$	and $\beta = \frac{\pi}{3}$	or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	B1
	Note: The w	ork for the fi	inal B1 mar		en in part (b) only.	[4]
(a)	()		,	where $g(q)$ is	→ $Aqg(q) - B \int g(q), A > 0, B > 0$, s a trigonometric function in q and ir $\int \sec^2 q dq$. [Note: $g(q)^{-1} \sec^2 q$]	M1
(c) Way 1	$\left\{ \grave{0} q \sec^2 q \mathrm{d} q \right\} = q \tan q - \grave{0} t$	an <i>q</i> {d <i>q</i> }	Eithe		ependent on the previous M mark $\rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$	dM1
	$= q \tan q - \ln(\sec q)$		q se	$c^2 q \rightarrow q \tan q$	$q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or	
	$\mathbf{or} = q \tan q$	$+\ln(\cos q)$	·		- $/ \ln(\sec q)$ or $/ q \tan q + / \ln(\cos q)$	A1
	Note: Condone	$q \sec^2 q \rightarrow$	qtan q - ln($(\sec x)$ or q	$\tan q + \ln(\cos x)$ for A1	
	$\left\{ \grave{\mathbf{j}} \tan q \sec^2 q \mathrm{d}q \right\}$		$\tan \theta$ sec	$^{2}\theta$ or / tan	$q \sec^2 q \rightarrow \pm C \tan^2 q \text{ or } \pm C \sec^2 q$ or $\pm C u^{-2}$, where $u = \cos q$	M1
	$= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$	tan q se	$c^2 q \rightarrow \frac{1}{2} ta$	$n^2 q$ or $\frac{1}{2}$ sec	$e^2 q$ or $\frac{1}{2\cos^2 q}$ or $\tan^2 q - \frac{1}{2}\sec^2 q$	
	or $\frac{1}{2u^2}$ where $u = \cos q$ or $\frac{1}{2}u^2$ where $u = \tan q$		or λ	$\tan\theta\sec^2\theta$	$u = \cos q \text{ or } 0.5u^2, \text{ where } u = \tan q$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta \text{ or } \frac{\lambda}{2} \sec^2 \theta \text{ or } \frac{\lambda}{2 \cos^2 \theta}$ $= \cos q \text{ or } 0.5/u^2, \text{ where } u = \tan q$	A1
	$\left\{\operatorname{Area}(R)\right\} = \left[3q \tan q - 3\ln(\sec q)\right]$	$+\frac{3}{2}\tan^2 q^{-\frac{\rho}{3}}$			D	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{\pi}{3}\right)$	$\frac{3}{2}(3)$ $-(0)$	or $\left(3\left(\frac{\pi}{3}\right)\right)$	$\sqrt{3} - 3 \ln 2 + \frac{3}{2}$	$(4) \left) - \left(\frac{3}{2}\right)$	
	•				$\pi - \ln 8$ or $\ln \left(\frac{1}{8} e^{\frac{9}{2} + \sqrt{3}\rho} \right)$	A1 o.e.
						[6]
						12

Question Number		Scheme		Notes	Marks			
8. (c)	Way 2 fo	or the first 5 marks: Applying integ	gration b	by parts on $\hat{\mathbf{j}}(q + \tan q) \sec^2 q dq$				
Way 2	$\dot{0}^{(q\sec^2 d)}$	$q + \tan q \sec^2 q) dq = \grave{0} (q + \tan q) \sec^2 q$	$\tan q \sec^2 q) dq = \grave{0}(q + \tan q) \sec^2 q dq, \begin{cases} u = q + \tan q \Rightarrow \frac{du}{dq} = 1 + \sec^2 q \\ \frac{dv}{dq} = \sec^2 q \Rightarrow v = \tan q = g(q) \end{cases}$					
	h(q) and	g(q) are trigonometric functions in	q) are trigonometric functions in q and $g(q) = \text{their } \dot{0} \sec^2 q dq$. [Note: $g(q)^{-1} \sec^2 q$]					
			A(q)	$+ \tan q) g(q) - B\dot{0}(1 + h(q))g(q), A > 0, B > 0$	M1			
	= (q + ta)	$(q + \tan q) \tan q - \dot{0} (1 + \sec^2 q) \tan q \{ dq \}$		dependent on the previous M mark Either $/[(q + \tan q)\sec^2 q] \rightarrow$ $+ \tan q \tan q - B \mathring{0} (1 + h(q)) \tan q$, $A^{-1} 0$, $B > 0$	dM1			
				or $(q + \tan q) \tan q - \grave{0} (1 + h(q)) \tan q$				
	$= (q + \tan q)\tan q - \grave{0}(\tan q + \tan q \sec^2 q)\{dq\}$							
	$= (q + \tan q) \tan q - \ln(\sec q) - \dot{\mathbf{j}} \tan q \sec^2 q \Big\{ dq \Big\}$			$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $/[(q + \tan q)\tan q - \ln(\sec q)] \text{ o.e.}$	A1			
		1 2		$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$	M1			
		$\tan q \tan q - \ln(\sec q) - \frac{1}{2}\tan^2 q$ $+ \tan q \tan q - \ln(\sec q) - \frac{1}{2}\sec^2 q \text{ etc.}$		$(q + \tan q)\tan q - \frac{1}{2}\tan^2 q$ or $(q + \tan q)\tan q - \frac{1}{2}\sec^2 q$	A1			
	Note	Allow the first two marks in part (c) for $q \tan q - \hat{\eta} \tan q$ embedded in their working						
	Note	Allow the first three marks in part	(c) for	$q \tan q - \ln(\sec q)$ embedded in their working				
	Note	Allow 3 rd M1 2 nd A1 marks for either $\tan^2 q - \frac{1}{2} \tan^2 q$ or $\tan^2 q - \frac{1}{2} \sec^2 q$ embedded in their working						
			Questi	on 8 Notes				
8. (a)	Note		Allow M1 for an answer of $k = \text{awrt } 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$					
	Note	Allow M1 for an answer of $k = 3$	arccos(-	$\left(\frac{1}{2}\right)\sin\left(\arccos\left(\frac{1}{2}\right)\right)$ without reference to $\frac{\sqrt{3}p}{2}$ or	$\frac{3p}{2\sqrt{3}}$			
	Note	E.g. allow M1 for $q = 60^{\circ}$, leadin	g to $k =$	$3(60)\sin(60)$ or $k = 90\sqrt{3}$				

	Question 8 Notes Continued						
8. (b)	Note	To gain A1, dq does not need to appear until the	ey obtain $3 \mathring{\mathbf{g}} (q \sec^2 q + \tan q \sec^2 q) dq$				
	Note	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq}$ ¹ $3q\sin q$, ne	seds to be a trigonometric function in q				
	Note	Writing $\hat{\mathbf{j}}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{\mathbf{j}}(q\sec q)$	$(2^2q + \tan q \sec^2 q) dq$ is sufficient for B1M1	A1			
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing is sufficient for B1M1A1	iting $\partial y \frac{dx}{dq} dq = 3\partial (q \sec^2 q + \tan q \sec^2 q)$)d <i>q</i>			
	Note	The final A mark would be lost for $\partial \frac{1}{\cos^3 q} 3\sin \theta$ [lack of brackets in this particular case].	$q + 3q\cos q = 3\hat{0}(q\sec^2 q + \tan q\sec^2 q)\mathbf{d}$	q			
	Note	Give 2^{nd} B0 for $a = 0$ and $b = 60^{\circ}$, without reference to $b = \frac{p}{3}$					
(c)	Note	A decimal answer of 7.861956551 (without a continuous answer)	correct exact answer) is A0.				
,	Note	First three marks are for integrating $\theta \sec^2 \theta$ with	·				
	Note	Fourth and fifth marks are for integrating $\tan \theta$ s	_				
	Note	Candidates are not penalised for writing $\ln \sec q $	1				
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0				
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTEL					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M1M1A1				
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\cos q)$ WITH NO INTEL					
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = q$, $\frac{dv}{dq} = 0$ one error in the direct application of this formula	49	ng			
8. (c)	Alternativ	we method for finding $\hat{\mathbf{j}} \tan q \sec^2 q dq$	10 1 1.11 0.11,1				
	$\begin{cases} u = \tan x \\ \frac{\mathrm{d}v}{\mathrm{d}q} = \sec x \end{cases}$	$ q \implies \frac{\mathrm{d}u}{\mathrm{d}q} = \sec^2 q \\ c^2 q \implies v = \tan q $					
) tan	$aq\sec^2 q dq = \tan^2 q - \hat{\mathbf{j}} \tan q \sec^2 q dq$					
		$q \sec^2 q dq = \tan^2 q$					
		1	$\tan \theta \sec^2 \theta \text{ or } \to \pm C \tan^2 q$	M1			
	ù tan⊄sec	$e^2 q dq = \frac{1}{2} \tan^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1			
	OI S	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q$ $= \sec q \tan q \Rightarrow v = \sec q$					
	⊳ ùtan q	$q \sec^2 q dq = \sec^2 q - \hat{\mathbf{j}} \sec^2 q \tan q dq$					
	⊳ 2ò tan	$aq\sec^2 q dq = \sec^2 q$					
		2 . 1 2	$\tan\theta \sec^2\theta \text{ or } \to \pm C\sec^2q$	M1			
) tan q sec	$c^2 q dq = \frac{1}{2} \sec^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \sec^2 q$	A1			